Home
Class 11
MATHS
(1)/(1!(n-1)!)+(1)/(3!(n-3)!)+(1)/(5!(n-...

`(1)/(1!(n-1)!)+(1)/(3!(n-3)!)+(1)/(5!(n-5)!)+...=`

A

`2^(n)`

B

`2^(n) //(n-1)!`

C

`2^(n)//n!`

D

`2^(n-1)//n!`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3),….,a_(n) are in AP and a_(1) = 0 , then the value of ((a_(3))/(a_(2)) + (a_(4))/(a_(3)) +...+(a_(n))/a_(n-1))-a_(2) ((1)/(a_(2)) + (1)/(a_(3))+...+(1)/(a_(n-2))) is equal to a) (n-2) + (1)/((n-2)) b) (1)/((n-2)) c)(n - 2) d)(n - 1)

(1+ (C_1)/(C_0)) (1+(C_2)/(C_3) )....(1+(C_n)/(C_(n-1))) is equal to : a) (n+1)/(n!) b) ((n+1)^(n))/((n-1)!) c) ((n-1)^(n))/(n!) d) ((n+1)^(n))/(n!)

If y=(1+1/x)(1+2/x)(1+3/x)…(1+n/x) and x ne 0," then "(dy)/(dx) when x = -1 is :a)n! b) (n-1)! c) (-1)^(n)(n-1)! d) (-1)^(n)n!

If a_(1), a_(2), a_(3), ………., a_(n) are in AP with common difference 5 and if a_(i)a_(j) ne -1 for i, j = 1, 2, …….., n, then tan^(-1)((5)/(1+a_(1)a_(2))) + tan^(-1)((5)/(1+a_(2)a_(3))) +……..+ tan^(-1)((5)/(1+a_(n-1)a_(n))) is equal to a) tan^(-1)((5)/(1+a(n)a_(n-1))) b) tan^(-1)((5)/(1+a(n)a_(n))) c) tan^(-1)((5n-5)/(1+a(n)a_(n+1))) d) tan^(-1)((5n-5)/(1+a_(1)a_(n)))

lim_(n to infty)(1^(2)/(1-n^(3))+2^(2)/(1-n^(3))+…+n^(2)/(1-n^(3))) is equal to :

For positive integers n_(1), n_(2) the value of the expression (1+i)^(n_(1)) + (1+ i^(3))^(n_(1)) + (1+ i^(5))^(n_(2)) + (1+ i^(7))^(n_(2)) , where i= sqrt-1 is a real number if and only if

If A=[[1 , 1, 1],[ 1, 1, 1],[ 1, 1 , 1]] , prove that A^n=[[3^(n-1), 3^(n-1) , 3^(n-1)],[ 3^(n-1), 3^(n-1) , 3^(n-1)],[ 3^(n-1) , 3^(n-1), 3^(n-1)]] n in N .

Using mathematical induction prove that 1/(1.2.3)+1/(2.3.4)+......+1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2)) for all n in N .