Home
Class 11
MATHS
If f(x)=x^(n), then the value of f(1)+(f...

If `f(x)=x^(n)`, then the value of `f(1)+(f^(1)(1))/(1)+(f^(2)(1))/(2!)+....+(f^(n)(1))/(n!)`, where f(x) denotes the rth order derivative of f(x) with respect to x, is

A

a) n

B

b) `2^(n)`

C

c) `2^(n-1)`

D

d) None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = ((x)/(2))^(10) , then f(1) + (f'(1))/(1!) + (f''(1))/(2!) + …….(f^((10))(1))/(10!) is equal to

Find the derivative of f(x) = (x+1)/x .

if f(x)=x/(x-1) , x!=1 find the inverse of f

If f(x) = (sin^(-1)x)/(sqrt(1-x^(2))) , then the value of (1-x^(2))f'(x) - x f(x) is

If f(x)= (x+1)/(x-1) then the value of f(f(x)) is equal to a)x b)0 c)-x d)1

If f((x +1)/(2x-1)) = 2x, x in N , then the value of f(2) is equal to

If f (x) = (x +2)/( 3x -1) , then f {f (x) } is

If f(x)=x^2 , find (f(1.1)-f(1))/((1.1-1))

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2))dt,AAxge1 then f(x) a) f(1/x) b) f((1)/(x^(2))) c) f(x^(2)) d) -f(1/x)