Home
Class 11
MATHS
If x+y=1, then overset(n)underset(r=0)Si...

If x+y=1, then `overset(n)underset(r=0)Sigma r ""^(n)C_(r) x^(r)y^(n-r)` equals

A

1

B

n

C

nx

D

ny

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum overset(n)underset(r=1) Sigma (r""^(n)C_(r))/(""^(n)C_(r-1))

Find the coefficient of x^(25) in expansion of expression overset(50)underset(r=0)Sigma ""^(50)C_(r)(2x-3)^(r )(2-x)^(50-r)

Prove that overset(n) underset(r=0)Sigma^(n)C_(r) sin rx cos (n-r)x=2^(n-1) sin (nx) .

If (1+x)^(n) = overset(n)underset(r=0)Sigma C_(r)x^(r ) , then prove that C_(1)+2C_(2)+3C_(3)+…..+nC_(n)=n2^(n-1) .