Home
Class 11
MATHS
If the expansion of powers of x of the f...

If the expansion of powers of x of the function `(1)/((1-ax) (1-bx))` is `a_(0)+a_(1)x+a_(2)x^(2) +a_(3)x^(3)+….`, then `a_(n)` is

A

`(b^(n)-a^(n))/(b-a)`

B

`(a^(n)-b^(n))/(b-a)`

C

`(a^(n+1)-b^(n+1))/(b-a)`

D

`(b^(n+1)-a^(n+1))/(b-a)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If |(x^(2)+x, 3x-1, -x+3),(2x+1, 2+x^(2),x^(3)-3),(x-3, x^(2)+4, 3x)| = a_(0) + a_(1)x + a_(2)x^(2) +….+a_(7)x^(7) , then the value of a_(0) is a)25 b)24 c)23 d)21

Write the first three terms of the sequence defined by a_(1)= 2 ,a_(n+1) = (2a_(n)+3)/(a_(n)-:2)

Let a_(1), a_(2), …………….,a_(n) be fixed real numbers and define a function f(x) = (x-a_(1))(x-a_(2))…….(x-a_(n)) . What is lim_(x rarr a_(1)) f(x)? For some a ne a_(1), a_(2),……a_(n) compute lim_(x rarr a) f(x)

If z=|(1+ax,1+bx,1+cx),(1+a_(1)x,1+b_(1)x,1+c_(1)x),(1+a_(2)x,1+b_(2)x,1+c_(2)x)|=A_(0)+A_(1)x+A_(2)x^(2)+A_(3)x^(3) , then A_(0) is equal to