Home
Class 12
MATHS
(d)/( dx) { cos ^(-1) (( 4 x ^(3))/(27) ...

`(d)/( dx) { cos ^(-1) (( 4 x ^(3))/(27) - x)} =` a)`(3)/( sqrt( 9 - x^(2)))` b)`(1)/( sqrt( 9 - x^(2)))` c)`(-3)/( sqrt( 9 - x^(2)))` d)` (-1)/( sqrt( 9 - x^(2)))`

A

a) `(3)/( sqrt( 9 - x^(2)))`

B

b) `(1)/( sqrt( 9 - x^(2)))`

C

c) `(-3)/( sqrt( 9 - x^(2)))`

D

d) ` (-1)/( sqrt( 9 - x^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) , then (dy)/(dx) is equal to a) (x)/( sqrt (1- x ^(2))) b) (1)/( sqrt(1- x ^(2))) c) (2)/( sqrt (1 - x ^(2))) d) (2x)/( sqrt (1- x ^(2)))

inttan(sin^(-1)x)dx is equal to a) (1)/(sqrt(1-x^(2)))+c b) sqrt(1-x^(2))+c c) (-x)/(sqrt(1-x^(2)))+c d) -sqrt(1-x^(2))+c

Find int( d x)/(sqrt(9 x-4 x^2))

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

Differentiate sin^(-1) ( 2 x sqrt( 1 - x^(2))) with respect to x if - (1)/( sqrt(2)) lt x lt (1)/( sqrt(2))

Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

underset(x to 3) (lim)( sqrt(x) - sqrt(3) )/( sqrt( x^(2) -9) ) is equal to a)1 b)3 c) sqrt3 d)0

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))