Home
Class 12
MATHS
If f(x) = | log (e) | x||, then f'(x) e...

If ` f(x) = | log _(e) | x||`, then f'(x) equals a)`(1)/( |x|), x ne 0 ` b)`(1)/( x) " for " | x| gt 1 and - (1)/( x) " for " | x| lt 1 ` c)` - (1)/(x) " for " | x| gt 1 and (1)/( x) " for " | x| lt 1 ` d)`(1)/( x) " for " x gt 0 and - (1)/( x) " for " x lt 0 `

A

`(1)/( |x|), x ne 0 `

B

`(1)/( x) " for " | x| gt 1 and - (1)/( x) " for " | x| lt 1 `

C

` - (1)/(x) " for " | x| gt 1 and (1)/( x) " for " | x| lt 1 `

D

`(1)/( x) " for " x gt 0 and - (1)/( x) " for " x lt 0 `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that In (1 + x) lt "x for x" gt 0

If f(x) = |x-2| + |x+1| - x , then f'(-10) is equal to a)-3 b)-2 c)-1 d)0

If f(x) = log [(1+x)/(1-x)] , the prove that f[(2x)/(1+x^2)] =2f(x)

If f(x)= (x+1)/(x-1) then the value of f(f(x)) is equal to a)x b)0 c)-x d)1

If f(x)=log[e^(x)((3-x)/(3+x))^(1//3)] then f'(1) is equal to a) (3)/(4) b) (2)/(3) c) (1)/(3) d) (1)/(2)

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C