Home
Class 12
MATHS
If f (x) = log(x) ( log (e) x) then f...

If ` f (x) = log_(x) ( log _(e) x) ` then f' (x) at x = e is a)1/e b)e c)`e^(1//e)` d)None of these

A

1/e

B

e

C

`e^(1//e)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(x^(3))(log_(e)x^(2)) , then f'(x) at x=e is a) (1)/(3e)(1-log_(e)2) b) (1)/(3e)(1+log_(e)2) c) (1)/(3e)(-1+log_(e)2) d) -(1)/(3e)(1+log_(e)2)

If f (x)= cos (log _(e) x) then f (x) f (y) - 1/2 [f ((y)/(x)) + f (xy)] has the value :

f(x) = (x)/(sqrt(1 + x))-log_(e) (1 + x), x gt - 1 is

If f(x)=|(2^(-x),e^(xlog_(2)2),x^(2)),(2^(-3x),e^(3xlog_(e)2),x^(4)),(2^(-5x),e^(5xlog_(e)2),1)| , then a) f(x) + f(-x) = 0 b)f(x) - f(-x) =0 c)f(x) + f(-x)=2 d)None of these

int_(1//2)^(2)|log_(10)x|dx= a) log_(10)(8//e) b) 1/2log_(10)(8//e) c) log_(10)(2//e) d)None of these

If int_(0)^(x)f(t)dt=x^(2)+e^(x)(xgt0) then f(1) is equal to a)1+e b)2+e c)3+e d)e