Home
Class 12
MATHS
If x = a sec^(3) theta and y = a tan^...

If x = a `sec^(3) theta and y = a tan^(3) theta, ` find ` ( dy)/( dx)` at ` theta = (pi)/( 3)`

Text Solution

Verified by Experts

The correct Answer is:
`( sqrt(3))/( 2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=asec^3theta and y=atan^3theta Find dy/dx

If x= alpha cos ^(3) theta and y = alpha sin ^(3) theta, then 1 + ((dy)/(dx)) ^(2) is

If x=asec^3theta and y=atan^3theta (d^2y)/(dx^2)

If x = a(1+ cos theta), y = a (theta + sin theta) , then (d^(2)y)/(d x^(2)) at theta = (pi)/(2) is

If x=asec^3theta and y=atan^3theta dx/(d theta) , dy/(d theta)

If x=asec^3theta and y=atan^3theta Show that ((d^2y)/(dx^2))_(theta=pi/4)=1/(12a)

If y = ( tan x) ^(( tan x)^( tan x)) then find ( dy)/( dx) " at x = " pi// 4

If x = a cos theta , y = b sin theta , then prove that ( d^(3) y)/( dx^(3)) = - ( 3 b)/( a^(3)) cosec^(4) theta cot theta

If x=acos^3theta , y=asin^3theta Find (d^2y)/dx^2 .

If tan ^(-1)(3/4)=theta , find the value of sin theta