Home
Class 12
MATHS
Let y = x^(3) - 8 x + 7 and x = f( t...

Let ` y = x^(3) - 8 x + 7 and x = f( t) ` . If `( dy)/( dt) = 2 ` and x = 3 at t = 0 then find the value of ` ( dx)/( dt) ` at t= 0

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(19)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = ( 2 t)/( 1 + t^(2)), y = (1 - t^(2))/( 1 + t ^(2)) then find ( dy)/( dx) at t = 2

If x = ( 3t)/( 1 + t ^(3)) and y = ( 3 t ^(2))/( 1 +t ^(3)), then (dy)/(dx) at t =1 equals

Find ( dy)/( dx) at x = pi//4 for x = a [ cos t + log( tan ((t)/(2)))] and y = a sin t

If f(x) = int_0^x tsint dt , then find f^'(x)

Find (dy/dx) , if x=a t^2, y=2 a t

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is

Let f (x) be differentiable and int _(0) ^(t^2) x f (x) dx = (1)/(2) t ^(4) for all t. Then the value of f (17) is

If x= A cos 4t + B sin 4t , then (d^(2)x)/(dt^(2))=

If x = 2 cos t - cos 2 t and y =2 sin t - sin 2t, then (dy)/(dx) at t = (pi)/(2) is