Home
Class 12
MATHS
If y = e ^(a cos ^(-1)x) , - 1 le x le ...

If ` y = e ^(a cos ^(-1)x) , - 1 le x le 1 ` , show that ` (1 - x^(2)) ( d^(2) y)/( dx^(2)) - x ( dy)/( dx) - a^(2) y = 0 `

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

if y=e^(a cos^-1x),-1lexle1 , show that dy/dx= (-ae^(acos^-1x))/(sqrt(1-x^2))

If y=(sin^-1x)^2 , then show that (1-x^2)(d^2y)/(dx^2)-xdy/dx=2

If y=sin^-1x ,then show that (1-x^2)(d^2y)/dx^2-xdy/dx=0

Let y=(x+sqrt(1+x^2))^m i) Find (dy/dx) ii) Show that (1+x^2) (d^2 y)/(d x^2)+x (dy/dx)-m^2 y=0 .