Home
Class 12
MATHS
Derivative of ( sqrt( 1 + x^(2)) + sqr...

Derivative of ` ( sqrt( 1 + x^(2)) + sqrt( 1 - x^(2)))/( sqrt(1 + x^(2)) - sqrt( 1 - x^(2)))` w.r.t. ` sqrt( 1 - x ^(4))` is

A

`(1 + sqrt( 1 - x^(4)))/(x^(2))`

B

`( x^(2) + sqrt( 1 - x^(4)))/( x^(6))`

C

`(1 + sqrt(1 - x^(4)))/( x^(6))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=

If y = sin ^(-1) (2x sqrt (1- x ^(2))), - (1)/( sqrt2) le x le (1)/( sqrt2) , then (dy)/(dx) is equal to a) (x)/( sqrt (1- x ^(2))) b) (1)/( sqrt(1- x ^(2))) c) (2)/( sqrt (1 - x ^(2))) d) (2x)/( sqrt (1- x ^(2)))

Evaluate lim_(x rarr 0) (sqrt(1 +x) - sqrt(1 - x))/(2x)

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2

int(log (x+sqrt(1+x^(2))))/(sqrt(1+x^(2)) )dx is equal to

int sqrt((1-x)/(1+x))dx is equal to a) sin^(-1)x + sqrt(1 - x^(2)) + C b) sin^(-1) x - 2 sqrt(1 - x^(2)) + C c) 2 sin^(-1) x - sqrt(1 - x^(2)) + C d) sin^(-1)x - sqrt(1 - x^(2)) + C

Evaluate int(1)/(x^(2)sqrt(1+x^(2)))dx .

Given x^2=cos2theta Write tan^-1((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) in simplest form.