Home
Class 12
MATHS
If x = (1 + log(e) t)/( t^(2)) and y = ...

If ` x = (1 + log_(e) t)/( t^(2)) and y = ( 3 + 2 log_(e) t)/( t) , " then " y ( dy)/( dx) - 2 x (( dy)/( dx))^(2) = `

A

`-1`

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log_(a)x, x gt 0," then find"(dy)/(dx)

If x = ( 3t)/( 1 + t ^(3)) and y = ( 3 t ^(2))/( 1 +t ^(3)), then (dy)/(dx) at t =1 equals

If x = ( 2 t)/( 1 + t^(2)), y = (1 - t^(2))/( 1 + t ^(2)) then find ( dy)/( dx) at t = 2

If x=(2at)/(1+t^(3))andy=(2at^(2))/((1+t^(3))^(2)), then (dy)/(dx) is

If x = sin^(-1) (3t - 4t^(3)) and y = cos^(-1) (sqrt(1 - t^(2))) , then (dy)/(dx) is equal to a) (1)/(2) b) (2)/(3) c) (1)/(3) d) (2)/(5)

If y = e ^(a cos ^(-1)x) , - 1 le x le 1 , show that (1 - x^(2)) ( d^(2) y)/( dx^(2)) - x ( dy)/( dx) - a^(2) y = 0