Home
Class 12
MATHS
If y = ae^(mx) + be^(-mx) , " then " ( ...

If ` y = ae^(mx) + be^(-mx) , " then " ( d^(2) y)/( dx^(2)) - m^(2) y ` = a)`m^(2) (ae^(mx) - be^(-mx))`b)1 c)0 d)None of these

A

`m^(2) (ae^(mx) - be^(-mx))`

B

1

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a^(x) .b^(2x-1) , " then " (d^(2)y)/(dx^(2)) is :

If y=ae^(5x)+be^(-5x) , show that (d^2y)/(dx^2)-25y=0

If y=ae^(mx)+be^(nx) , show that (d^2y)/(dx^2)-(m+n)dy/dx+mny=0

Find (d^2y)/(dx^2) y=tan^(-1)x

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=(dy/dx)^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=(dy/dx)^2

If y = e ^(a cos ^(-1)x) , - 1 le x le 1 , show that (1 - x^(2)) ( d^(2) y)/( dx^(2)) - x ( dy)/( dx) - a^(2) y = 0

If e^y(x+1)=1 . Show that (d^2y)/dx^2=(dy/dx)^2