Home
Class 12
MATHS
The total number of parallel tangents of...

The total number of parallel tangents of `f_(1)(x) = x^(2) - x + 1 and f_(2)(x) = x^(3) - x^(2) - 2x + 1` is a)2 b)0 c)1 d)infinite

A

2

B

0

C

1

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2x^(2)+bx+c and f(0)=3 and f(2)=1 , then f(1) is equal to a)1 b)2 c)0 d) 1/2

If f (x) = (x +2)/( 3x -1) , then f {f (x) } is

If int_(-1)^(4) f(x) dx=4 and int_(2)^(4) (3-f(x))dx=7 , then int_(-1)^(2) f(x)dx is a)1 b)2 c)3 d)5

The minimum value of f(x) = max{x, 1 + x, 2 - x} is a) (1)/(2) b) (3)/(2) c)1 d)0

If f(x) = |x-2| + |x+1| - x , then f'(-10) is equal to a)-3 b)-2 c)-1 d)0

The number of linear functions f satisfying f(x+f(x))= x + f (x) AA x in R is a)0 b)1 c)2 d)3