Home
Class 12
MATHS
The angle made by the tangent of the cur...

The angle made by the tangent of the curve `x = a(t + sin t cos t), y = a (1 + sin t)^(2)` with the x-axis at any point on it is a)`(1)/(4) (pi + 2t)` b)`(1 - sin t)/(cos t)` c)`(1)/(4) (2t - pi)` d)`(1 + sin t)/(cos 2 t)`

A

`(1)/(4) (pi + 2t)`

B

`(1 - sin t)/(cos t)`

C

`(1)/(4) (2t - pi)`

D

`(1 + sin t)/(cos 2 t)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sin t and y = tan t , then (dy)/(dx) is equal to a) cos ^(2) t b) (1)/( cos ^(3) t ) c) (1)/( cos ^(2) t ) d) sin ^(2) t

If x = 2 cos t - cos 2 t and y =2 sin t - sin 2t, then (dy)/(dx) at t = (pi)/(2) is

Find dy/dx if x=a(t-sin t) , y=a(1-cost) .

Find the equation of tangent to the curve given by x=asin^3t,y=bcos^3t at a point where t=pi/2 .

If x = ( 2 t)/( 1 + t^(2)), y = (1 - t^(2))/( 1 + t ^(2)) then find ( dy)/( dx) at t = 2

The equation of the tangent to the curve x = (t - 1)/(t + 1), y = (t + 1)/(t - 1) at t = 2 is a) x + 9y - 6 = 0 b) 9x - y - 6 = 0 c) 9x + y + 6 = 0 d) 9x + y - 6 = 0