Home
Class 12
MATHS
The two curves x^(3) - 3xy^(2) + 2 = 0 a...

The two curves `x^(3) - 3xy^(2) + 2 = 0 and 3x^(2)y - y^(3) = 2` a)cut at an angle `pi//4` b)touch each other c)cut at an angle `pi//3` d)cut at right angles

A

cut at an angle `pi//4`

B

touch each other

C

cut at an angle `pi//3`

D

cut at right angles

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the circles x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0 cut orthogonally, then c + d equals

Prove that the curve x=y^2 and xy=k cut at right angles, if 8k^2=1 .

If 4x^(2) +py^(2) = 45 and x ^(2) - 4y^(2) = 5 cut orthogonally , then the value of p is : a) (1)/(9) b) (1)/(3) c)3 d)9

If the curves ay + x^(2) = 7 and x^(3) = y cut orthogonally at (1, 1), then find the value a.

Find the angle between the curves C_(1): x^(2) - (y^(2))/(3) = a^(2) and C_(2): xy^(3) = c .

The value of k, if the circles 2x ^(2) + 2y ^(2) - 4x + 6y = 3 and x ^(2) + y ^(2) + kx + y =0 cut orthogonally is