Home
Class 12
MATHS
If 3x + 2y = 1 is a tangent to y = f(x) ...

If `3x + 2y = 1` is a tangent to y = f(x) at x = 1/2, then `lim_(x rarr 0) (x(x - 1))/(f((e^(2x))/(2)) - f((e^(-2x))/(2)))`

A

`1//3`

B

`1//2`

C

`1//6`

D

`1//7`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0)(1-x-e^(x))/(x^(2)) =

If f is differentiable at x=1, then lim_(x rarr 1) (x^(2) f(1)-f(x))/(x-1) is

lim_(x rarr 0) (sqrt(1 + 2x) - 1)/(x) = a)0 b)-1 c) (1)/(2) d)1

Evaluate lim_(x rarr 0) (cos 2x - 1)/(cos x - 1)

Evaluate lim_(x rarr 0) (sqrt(1 +x) - sqrt(1 - x))/(2x)

Evaluate lim_(x rarr 0) (e^(bx) - 1)/x and lim_(x rarr 0) (e^(ax) - 1)/x

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

Evaluate lim_(x rarr 0) [(10^x - 2^x - 5^x + 1)/( x tanx)]