Home
Class 12
MATHS
Concept Of Plane (समतल की अवधारणा)|Equat...

Concept Of Plane (समतल की अवधारणा)|Equation Of Plane In Normal Form (सामान्य रूप मे समतल की समीकरण)|Equation Of Plane Using 1 Point & 2 Point (1 बिन्दु ओर 2 बिन्दु का उपयोग करके समतल का समीकरण)|Angle Between Two Planes (दो समतलों के बीच का कोण)|Distance Of Point From A Plane (एक समतल से बिन्दु की दूरी)|Distance Between Two Parallel Plane (दो समांतर समतल के बीच की दूरी)|Important Points (महत्वपूर्ण बिन्दु)|OMR

Promotional Banner

Similar Questions

Explore conceptually related problems

Concept Of Plane (समतल की अवधारणा)|Equation Of Plane In Normal Form (सामान्य रूप में समतल का समीकरण)|Questions (प्रश्न)|OMR

Slope Of Line (सीधी रेखा का ढाल)|Angle Between Two Lines (दो रेखाओं के बीच का कोण)|Equation Of Line (रेखा का समीकरण)|Concept Of Line (रेखा की अवधारणा)|Distance Between Two Parallel Lines (दो समांतर रेखाओ के बीच की दूरी)|Distance Of A Point From A Lines (दो रेखा से एक बिन्दु की दूरी)|Some Short Tricks (आसान तरीके)|Questions (प्रश्न)|OMR

Normal form || Intercept form || Parallel plane || Distance OF a point from a plane || Distance between two parallel planes|| Equation OF bisector plane

Shortest Distance Between Two Lines (दो रेखा के बीच दूरी)|Coplanarity (समतलीयता)|Angle Between Line And Plane (रेखा और समतल के बीच का कोण)|Scaler Triple Product (अदिश ट्रिपल उत्पाद)|Sphere (वृत्त)|Question (प्रश्न)

Slope Of Line / सीधी रेखा का ढाल |Angle Between Two Lines (दो रेखाओ के बीच का कोण)|Equation Of Line (रेखा का समीकरण)|Concept Of Line (रेखा की अवधारणा)|Questions (प्रश्न)|OMR

What We Learn Today (आज हम क्या पढ़ेंगे)|Basics Of Coordinate Geometry (निर्देशांक ज्यामिति)|Direction Ratios (दिशा अनुपात)|Direction Cosine (दिक्-कोज्या)|Concept Of Line (रेखा की अवधारणा)|Angle Between Two Lines (दो रेखाओ के बीच का कोण) |Questions (प्रश्न)|OMR

Equation OF 3 Coplanar Vectors|| Equation OF Plane OF 2 Parallel Lines|| Intercept form OF Plane|| Perpendicular Distance OF Point from Plane & between 2 parallel planes and examples

Find the equation of the plane passing through the point (2,-3,5) and parallel to the points 3x-7y-2z=5 . Also, the find the distance between the two planes.

Find the equation of the plane which passes through the point (3,4,-1) and is parallel to the plane 2x-3y+5z+7=0. Also,find the distance between the two planes.

Find the equation of plane in Cartesian form which is at a distance of 5 unit from origin and its normal vector from origin is parallel to a vector formed by joining points A(1, 2, 3) and B(3, -4, -6).