Home
Class 9
MATHS
Evaluate : (sqrt(7)+sqrt(5))/(sqrt(7)+sq...

Evaluate : `(sqrt(7)+sqrt(5))/(sqrt(7)+sqrt(20)+sqrt(28)-sqrt(5)-sqrt(80))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\sqrt{7} + \sqrt{5}) / (\sqrt{7} + \sqrt{20} + \sqrt{28} - \sqrt{5} - \sqrt{80})\), we will simplify both the numerator and the denominator step by step. ### Step-by-Step Solution: 1. **Simplify the Denominator:** - Start with the denominator: \(\sqrt{7} + \sqrt{20} + \sqrt{28} - \sqrt{5} - \sqrt{80}\). - Rewrite \(\sqrt{20}\), \(\sqrt{28}\), and \(\sqrt{80}\): - \(\sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5}\) - \(\sqrt{28} = \sqrt{4 \cdot 7} = 2\sqrt{7}\) - \(\sqrt{80} = \sqrt{16 \cdot 5} = 4\sqrt{5}\) Therefore, the denominator becomes: \[ \sqrt{7} + 2\sqrt{5} + 2\sqrt{7} - \sqrt{5} - 4\sqrt{5} \] 2. **Combine Like Terms in the Denominator:** - Combine \(\sqrt{7}\) terms: - \(\sqrt{7} + 2\sqrt{7} = 3\sqrt{7}\) - Combine \(\sqrt{5}\) terms: - \(2\sqrt{5} - \sqrt{5} - 4\sqrt{5} = (2 - 1 - 4)\sqrt{5} = -3\sqrt{5}\) So, the denominator simplifies to: \[ 3\sqrt{7} - 3\sqrt{5} \] 3. **Factor the Denominator:** - Factor out the common term \(3\): \[ 3(\sqrt{7} - \sqrt{5}) \] 4. **Rewrite the Expression:** - Now the expression can be rewritten as: \[ \frac{\sqrt{7} + \sqrt{5}}{3(\sqrt{7} - \sqrt{5})} \] 5. **Multiply by the Conjugate:** - To simplify further, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(\sqrt{7} + \sqrt{5})(\sqrt{7} + \sqrt{5})}{3(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})} \] 6. **Calculate the Numerator:** - The numerator becomes: \[ (\sqrt{7} + \sqrt{5})^2 = 7 + 5 + 2\sqrt{35} = 12 + 2\sqrt{35} \] 7. **Calculate the Denominator:** - The denominator becomes: \[ 3(\sqrt{7}^2 - \sqrt{5}^2) = 3(7 - 5) = 3 \cdot 2 = 6 \] 8. **Final Expression:** - Now, the expression simplifies to: \[ \frac{12 + 2\sqrt{35}}{6} \] 9. **Simplify Further:** - Divide each term in the numerator by 6: \[ 2 + \frac{1}{3}\sqrt{35} \] ### Final Answer: \[ 2 + \frac{1}{3}\sqrt{35} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise NCERT questions (Exercise 1.1)|4 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise NCERT questions (Exercise 1.2)|3 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate (sqrt(7)-sqrt(5))/ (sqrt(7)-sqrt(5))

Evaluate (sqrt(5)-sqrt(3))/(sqrt(2)+sqrt(7))

Evaluate (sqrt(7)+sqrt(2))+(sqrt(4)+sqrt(7))

Evaluate (sqrt(7)-sqrt(2))(sqrt(5)+sqrt(2))

Evaluate : (sqrt(11)-sqrt(7))/(sqrt(11)+sqrt(7))

Evaluate : ( sqrt(7) + sqrt(5) ) ( sqrt(5) - sqrt(7) )

Evaluate : sqrt(5)/ (sqrt(7) - sqrt(5)

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

5/(sqrt(5)-sqrt(7))

(1)/(sqrt(2)+sqrt(5)-sqrt(7))