Home
Class 9
MATHS
Simplify : (i) 2^(2//3).2^(1//5) (ii...

Simplify :
(i) `2^(2//3).2^(1//5)`
(ii) `((1)/(3^(3)))^(7)`
(iii) `(11^((1)/(2)))/(11^((1)/(4)))`
(iv) `7^(1//2).8^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify each expression step by step. ### (i) Simplify \( 2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} \) 1. **Use the property of exponents**: When multiplying two powers with the same base, we can add the exponents. \[ 2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = 2^{\frac{2}{3} + \frac{1}{5}} \] 2. **Find a common denominator**: The least common multiple (LCM) of 3 and 5 is 15. We will convert the fractions to have a common denominator. \[ \frac{2}{3} = \frac{10}{15}, \quad \frac{1}{5} = \frac{3}{15} \] 3. **Add the fractions**: \[ \frac{10}{15} + \frac{3}{15} = \frac{13}{15} \] 4. **Combine the exponents**: \[ 2^{\frac{2}{3} + \frac{1}{5}} = 2^{\frac{13}{15}} \] **Final answer**: \( 2^{\frac{13}{15}} \) --- ### (ii) Simplify \( \left(\frac{1}{3^3}\right)^7 \) 1. **Use the power of a power property**: When raising a power to another power, we multiply the exponents. \[ \left(\frac{1}{3^3}\right)^7 = \frac{1^7}{(3^3)^7} = \frac{1}{3^{3 \cdot 7}} \] 2. **Calculate the exponent**: \[ 3 \cdot 7 = 21 \] 3. **Write the final expression**: \[ \frac{1}{3^{21}} \] **Final answer**: \( \frac{1}{3^{21}} \) --- ### (iii) Simplify \( \frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} \) 1. **Use the property of exponents**: When dividing two powers with the same base, we subtract the exponents. \[ \frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2} - \frac{1}{4}} \] 2. **Find a common denominator**: The LCM of 2 and 4 is 4. \[ \frac{1}{2} = \frac{2}{4} \] 3. **Subtract the fractions**: \[ \frac{2}{4} - \frac{1}{4} = \frac{1}{4} \] 4. **Combine the exponents**: \[ 11^{\frac{1}{2} - \frac{1}{4}} = 11^{\frac{1}{4}} \] **Final answer**: \( 11^{\frac{1}{4}} \) --- ### (iv) Simplify \( 7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} \) 1. **Use the property of exponents**: When multiplying two powers with different bases but the same exponent, we can combine them under a single exponent. \[ 7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} = (7 \cdot 8)^{\frac{1}{2}} \] 2. **Multiply the bases**: \[ 7 \cdot 8 = 56 \] 3. **Combine under the exponent**: \[ (7 \cdot 8)^{\frac{1}{2}} = 56^{\frac{1}{2}} \] **Final answer**: \( 56^{\frac{1}{2}} \) ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple choice Question(Level-1))|50 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise NCERT questions (Exercise 1.5)|5 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Solve : (i) 2^((2)/(3))*2^((1)/(4)) (ii) ((1)/(3^(3)))^(7) (iii) (11^((1)/(2)))/(11^((1)/(4))) (iv) 7^((1)/(2))*8^((1)/(2))

1 Simplify: (i) 2^((2)/(3)) times 2^((1)/(5) and ((1)/(3)^(3))^(7)

Simplify (i) 2^(2/3). 2^(1/3) (ii) (3^(1/5))^4 (iii) (7^(1/5))/(7^(1/3)) (iv) 13^(1/5). 17^(1/5)

Simplify (i) (6^(1//4))/(6^(1//5)) (ii) (8^(1//2))/(8^(2//3)) (iii) (5^(6//7))/(5^(2//3))

Simplify (i) (3^(4))^((1)/(2)) (ii) (64)^((1)/(6)) (iii) ((1)/(3^(4)))^((1)/(2))

Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))

Simplify ( i ) (((1)/(3))^(-2)-((1)/(2))^(-3)}-:((1)/(4))^(-2)*( ii) ((5)/(8))^(-7)xx((8)/(5))^(-5)

Simplify : 5(1)/(2) of ((2)/(3)-(3)/(5))+(1)/(2)+(5)/(11)

7(1)/(2)-((8)/(11)xx7(1)/(3))-:(3(1)/(2)-2(1)/(4))

Evaluate (i) (1^(3) + 2^(3) + 3^(3))^((1)/(2)) (ii) [5(8^((1)/(2)) +27^((1)/(3)))^(3)]^((1)/(4)) (iii) (2^(0) + 7^(0))/(5^(0)) (iv) [(16)^((1)/(2))]^((1)/(2))