Home
Class 9
MATHS
1//(sqrt(3)-sqrt(2)) is not equal to...

`1//(sqrt(3)-sqrt(2))` is not equal to

A

`sqrt(3)+sqrt(2)`

B

`sqrt(2)//(sqrt(6)-2)`

C

`(sqrt(3)-sqrt(2))//(5-2sqrt(6))`

D

`sqrt(3)//(9-sqrt(6))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{1}{\sqrt{3} - \sqrt{2}} \) and determine which of the given options is not equal to this expression, we will rationalize the denominator and check each option step by step. ### Step-by-Step Solution: 1. **Rationalize the Denominator**: We start with the expression \( \frac{1}{\sqrt{3} - \sqrt{2}} \). To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{3} + \sqrt{2} \). \[ \frac{1}{\sqrt{3} - \sqrt{2}} \cdot \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{\sqrt{3} + \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} \] 2. **Calculate the Denominator**: The denominator simplifies as follows: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] Thus, we have: \[ \frac{\sqrt{3} + \sqrt{2}}{1} = \sqrt{3} + \sqrt{2} \] 3. **Evaluate Each Option**: Now, we will check each option to see if they are equal to \( \sqrt{3} + \sqrt{2} \). - **Option 1**: \( \sqrt{3} + \sqrt{2} \) (This is equal to our expression) - **Option 2**: To check this, we multiply and divide by \( \sqrt{2} \): \[ \frac{1}{\sqrt{3} - \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{6} - 2} \] This is not equal to \( \sqrt{3} + \sqrt{2} \). - **Option 3**: We multiply and divide by \( \sqrt{2} \): \[ \frac{1}{\sqrt{3} - \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{6} - 2} \] This simplifies to \( \sqrt{3} + \sqrt{2} \). - **Option 4**: We multiply and divide by \( \sqrt{3} \): \[ \frac{1}{\sqrt{3} - \sqrt{2}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3 - \sqrt{6}} \] This does not equal \( \sqrt{3} + \sqrt{2} \). 4. **Conclusion**: The option that is not equal to \( \frac{1}{\sqrt{3} - \sqrt{2}} \) is **Option 4**. ### Final Answer: The expression \( \frac{1}{\sqrt{3} - \sqrt{2}} \) is not equal to **Option 4**.
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise NCERT questions (Exercise 1.6)|3 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(3)+sqrt(2)) is equal to

find 1/(sqrt(3)+sqrt(2)) is equal to

(22)/(2+sqrt(3)+sqrt(5)) is equal to

(1)/(sqrt(9)-sqrt(8)) is equal to: 3+2sqrt(2)(b)(1)/(3+2sqrt(2)) (c) 3-2sqrt(2)(d)(3)/(2)-sqrt(2)

(12)/(3+sqrt(5)+2sqrt(2)) is equal to 1-sqrt(5)+sqrt(2)+sqrt(10) (b) 1+sqrt(5)+sqrt(2)-sqrt(10) (c) 1+sqrt(5)-sqrt(2)+sqrt(10) (d) 1-sqrt(5)-sqrt(2)+sqrt(10)

(sqrt(5)+sqrt(3))((3sqrt(3))/(sqrt(5)+sqrt(2))-sqrt(5)/(sqrt(3)+sqrt(2))) is equal to :

If sqrt(2)=1.4142 then sqrt((sqrt(2)-1)/(sqrt(2)+1)) is equal to

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))xx(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1)) is equal to 3sqrt(2)(b)(sqrt(2))/(3) (c) (2)/(3) (d) (1)/(3)

Given that: sqrt(3) = 1.732, (sqrt(6) + sqrt(2)) / (sqrt(6)-sqrt(2)) is equal to:

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-EXERCISE (Multiple choice Question(Level-1))
  1. Simplify: (7sqrt(3))/(sqrt(10)+sqrt(3))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(...

    Text Solution

    |

  2. The rationalising factor of root(5)(a^(2)b^(3)c^(4)) is

    Text Solution

    |

  3. 1//(sqrt(3)-sqrt(2)) is not equal to

    Text Solution

    |

  4. (a+sqrt(a^(2)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+s...

    Text Solution

    |

  5. Arrange in descending order of magnitude root(3)(2) , root(6)(3) , roo...

    Text Solution

    |

  6. Write a rational number between sqrt(2) and sqrt(3)

    Text Solution

    |

  7. The greater between sqrt(17)-sqrt(12) and sqrt(11)-sqrt(6) is

    Text Solution

    |

  8. Which of the following expressions is same as (1)/((root(3)(2)-1)) ?

    Text Solution

    |

  9. If m=(cab)/(a-b) then b equals

    Text Solution

    |

  10. The value of (x^(q)/x^(r))^(1/(qr)) xx (x^(r)/x^(p))^(1/(rp)) xx (x^(p...

    Text Solution

    |

  11. The value of (root(6)(27)-sqrt(6(3)/(4)))^(2) equals

    Text Solution

    |

  12. The rational number between 1//2 and 1//3 is

    Text Solution

    |

  13. Simplify: (2^(n+4)-2(2^(n)))/(2(2^(n+3)))

    Text Solution

    |

  14. If (a+(1)/(a))^(2)=9, then a^(3)+(1)/(a^(3)) equals

    Text Solution

    |

  15. If both 'a' and 'b' are rational numbers, then 'a' and 'b' from (3-sqr...

    Text Solution

    |

  16. (2sqrt(6))/(sqrt(2)+sqrt(3)+sqrt(5)) equals

    Text Solution

    |

  17. If 25^(x-1)=5^(2x-1)-100, then find the value of x.

    Text Solution

    |

  18. If x=2-sqrt(3), then the values of x^(2)+(1)/(x^(2)) and x^(2)-(1)/(x^...

    Text Solution

    |

  19. 4^(44)+4^(44)+4^(44)+4^(44)=4^x ,t h e nx

    Text Solution

    |

  20. The 100^(th) root of 10^((10^(10))) is

    Text Solution

    |