Home
Class 9
MATHS
If sqrt(5)=2.236 and sqrt(10)=3.162 , t...

If `sqrt(5)=2.236` and `sqrt(10)=3.162` , then the value of `(15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80))` is

A

`5.398`

B

`4.398`

C

`3.398`

D

`6.398`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{15}{\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80}}\), we will simplify the denominator step by step. ### Step 1: Rewrite the square roots in the denominator We know that: - \(\sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5}\) - \(\sqrt{40} = \sqrt{4 \cdot 10} = 2\sqrt{10}\) - \(\sqrt{80} = \sqrt{16 \cdot 5} = 4\sqrt{5}\) Now, substitute these values into the denominator: \[ \sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80} = \sqrt{10} + 2\sqrt{5} + 2\sqrt{10} - \sqrt{5} - 4\sqrt{5} \] ### Step 2: Combine like terms in the denominator Now, combine the terms: \[ \sqrt{10} + 2\sqrt{10} + 2\sqrt{5} - \sqrt{5} - 4\sqrt{5} = 3\sqrt{10} - 3\sqrt{5} \] ### Step 3: Factor out the common term The denominator can be factored: \[ 3(\sqrt{10} - \sqrt{5}) \] ### Step 4: Substitute the simplified denominator back into the expression Now, substitute this back into the original expression: \[ \frac{15}{3(\sqrt{10} - \sqrt{5})} \] ### Step 5: Simplify the fraction Now simplify the fraction: \[ \frac{15}{3(\sqrt{10} - \sqrt{5})} = \frac{15}{3} \cdot \frac{1}{\sqrt{10} - \sqrt{5}} = 5 \cdot \frac{1}{\sqrt{10} - \sqrt{5}} = \frac{5}{\sqrt{10} - \sqrt{5}} \] ### Step 6: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by \(\sqrt{10} + \sqrt{5}\): \[ \frac{5(\sqrt{10} + \sqrt{5})}{(\sqrt{10} - \sqrt{5})(\sqrt{10} + \sqrt{5})} = \frac{5(\sqrt{10} + \sqrt{5})}{10 - 5} = \frac{5(\sqrt{10} + \sqrt{5})}{5} \] ### Step 7: Final simplification This simplifies to: \[ \sqrt{10} + \sqrt{5} \] ### Step 8: Substitute the values of \(\sqrt{10}\) and \(\sqrt{5}\) Now substitute the given values: \(\sqrt{10} = 3.162\) and \(\sqrt{5} = 2.236\): \[ \sqrt{10} + \sqrt{5} = 3.162 + 2.236 = 5.398 \] Thus, the final answer is: \[ \sqrt{10} + \sqrt{5} = 5.398 \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise NCERT questions (Exercise 1.6)|3 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt(10)= 3.162 , find the value of (1)/(sqrt(10))

If sqrt(5)=2.236 and sqrt(6)=2.449, then the value of (1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3)) is

Find the value of (1)/(sqrt(10)) where sqrt(10)=3.5

The value of log_(10)(sqrt(3-sqrt(5))+sqrt(3+sqrt(5))) is

Evaluate : (sqrt(7)+sqrt(5))/(sqrt(7)+sqrt(20)+sqrt(28)-sqrt(5)-sqrt(80))

If sqrt(2) = 1.414, sqrt(3) = 1.732, sqrt(5) = 2.236 and sqrt(6) = 2.449 , find the value of (2+sqrt(3))/(2-sqrt(3)) +(2-sqrt(3))/(2+sqrt(3)) +(sqrt(3) -1)/(sqrt(3) +1)

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Given that sqrt(3)=1.732 and sqrt(5)=2.236 then find the value of ((6)/(sqrt(5)-sqrt(3))) .

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-EXERCISE (Multiple choice Question(Level-1))
  1. Evaluate : (27)^(-(1)/(3)).(27)^(-(1)/(3))[(27)^((1)/(3))-(27)^((2)/(3...

    Text Solution

    |

  2. If (2^(m+n))/(2^(n-m))=16,(3^(p))/(3^(n))=81 and a=2^(1//10) then (a^(...

    Text Solution

    |

  3. Find the value of (4)/((216)^(-2//3))-(1)/((256)^(-3//4))

    Text Solution

    |

  4. Find the value of ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(...

    Text Solution

    |

  5. (3^(5x)xx8 1^2xx6561)/(3^(2x))=3^7,t h e nx=

    Text Solution

    |

  6. For an integer n, a student states the following : I. If n is odd, (...

    Text Solution

    |

  7. If sqrt(5)=2.236 and sqrt(10)=3.162 , then the value of (15)/(sqrt(10...

    Text Solution

    |

  8. The value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+..... +(1)/(99xx100) is

    Text Solution

    |

  9. If x=(sqrt(3)+1)/(2) then x^(3)+(1)/(x^(3)) =

    Text Solution

    |

  10. Which one of the following is correct ?

    Text Solution

    |

  11. Simplify root5(x^4 root 4 (x^3 root 3(x^2 sqrtx))).

    Text Solution

    |

  12. If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) then find the value o...

    Text Solution

    |

  13. Which of the following statements is true ?

    Text Solution

    |

  14. Simplify : (3^(-3)xx6^2xxsqrt98)/(5^2 xx (1/25)^(1/3) xx (15)^(-4/3)xx...

    Text Solution

    |

  15. Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(...

    Text Solution

    |

  16. If a=(sqrt(2)+1)/(sqrt(2)-1)"and"b=(sqrt(2)-1)/(sqrt(2)+1) then value ...

    Text Solution

    |

  17. If (3+2sqrt(5))/(4-2sqrt(5))=p+qsqrt(5) where p and q are rational num...

    Text Solution

    |

  18. 2.bar(6)-0.bar(82) is equal to

    Text Solution

    |

  19. If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^...

    Text Solution

    |

  20. If x=(sqrt(3)+1)/(sqrt(3)-1)+(sqrt(3)-1)/(sqrt(3)+1)+(sqrt(3)-2)/(sqrt...

    Text Solution

    |