Home
Class 9
MATHS
The value of (1)/(1xx2)+(1)/(2xx3)+(1)/(...

The value of `(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+..... +(1)/(99xx100)` is

A

less than `(99)/(100)`

B

equal to `(99)/(100)`

C

equal to `(99)/(100)`

D

greater than `(100)/(99)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \ldots + \frac{1}{99 \times 100} \] ### Step 1: Rewrite each term We can rewrite each term in the sum using the formula: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \] This means we can express each term as follows: \[ \frac{1}{1 \times 2} = 1 - \frac{1}{2} \] \[ \frac{1}{2 \times 3} = \frac{1}{2} - \frac{1}{3} \] \[ \frac{1}{3 \times 4} = \frac{1}{3} - \frac{1}{4} \] \[ \vdots \] \[ \frac{1}{99 \times 100} = \frac{1}{99} - \frac{1}{100} \] ### Step 2: Write the entire sum Now, we can write the entire sum \( S \) as: \[ S = \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \ldots + \left( \frac{1}{99} - \frac{1}{100} \right) \] ### Step 3: Observe the cancellation Notice that in this series, all intermediate terms cancel out: - The \( -\frac{1}{2} \) from the first term cancels with the \( +\frac{1}{2} \) from the second term. - The \( -\frac{1}{3} \) from the second term cancels with the \( +\frac{1}{3} \) from the third term. - This pattern continues all the way to \( -\frac{1}{99} \) from the second last term cancelling with \( +\frac{1}{99} \) from the last term. ### Step 4: Write the remaining terms After cancellation, we are left with: \[ S = 1 - \frac{1}{100} \] ### Step 5: Simplify the expression Now, simplify the expression: \[ S = 1 - \frac{1}{100} = \frac{100}{100} - \frac{1}{100} = \frac{99}{100} \] ### Final Answer Thus, the value of the sum is: \[ \frac{99}{100} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise NCERT questions (Exercise 1.6)|3 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

The value of 1000[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+cdots+(1)/(999xx1000)] is equal to

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10

The value of 1+(1)/(4xx3)+(1)/(4xx3^(2))+(1)/(4xx3^(3)) is (121)/(108)(b)(3)/(2)(c)(31)/(2) (d) None of these

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Find the value of (1)/(2xx3)+(1)/(3xx4)+(1)/(4xx5)+(1)/(5xx6)+backslash+(1)/(9xx10)

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-EXERCISE (Multiple choice Question(Level-1))
  1. Evaluate : (27)^(-(1)/(3)).(27)^(-(1)/(3))[(27)^((1)/(3))-(27)^((2)/(3...

    Text Solution

    |

  2. If (2^(m+n))/(2^(n-m))=16,(3^(p))/(3^(n))=81 and a=2^(1//10) then (a^(...

    Text Solution

    |

  3. Find the value of (4)/((216)^(-2//3))-(1)/((256)^(-3//4))

    Text Solution

    |

  4. Find the value of ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(...

    Text Solution

    |

  5. (3^(5x)xx8 1^2xx6561)/(3^(2x))=3^7,t h e nx=

    Text Solution

    |

  6. For an integer n, a student states the following : I. If n is odd, (...

    Text Solution

    |

  7. If sqrt(5)=2.236 and sqrt(10)=3.162 , then the value of (15)/(sqrt(10...

    Text Solution

    |

  8. The value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+..... +(1)/(99xx100) is

    Text Solution

    |

  9. If x=(sqrt(3)+1)/(2) then x^(3)+(1)/(x^(3)) =

    Text Solution

    |

  10. Which one of the following is correct ?

    Text Solution

    |

  11. Simplify root5(x^4 root 4 (x^3 root 3(x^2 sqrtx))).

    Text Solution

    |

  12. If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) then find the value o...

    Text Solution

    |

  13. Which of the following statements is true ?

    Text Solution

    |

  14. Simplify : (3^(-3)xx6^2xxsqrt98)/(5^2 xx (1/25)^(1/3) xx (15)^(-4/3)xx...

    Text Solution

    |

  15. Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(...

    Text Solution

    |

  16. If a=(sqrt(2)+1)/(sqrt(2)-1)"and"b=(sqrt(2)-1)/(sqrt(2)+1) then value ...

    Text Solution

    |

  17. If (3+2sqrt(5))/(4-2sqrt(5))=p+qsqrt(5) where p and q are rational num...

    Text Solution

    |

  18. 2.bar(6)-0.bar(82) is equal to

    Text Solution

    |

  19. If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^...

    Text Solution

    |

  20. If x=(sqrt(3)+1)/(sqrt(3)-1)+(sqrt(3)-1)/(sqrt(3)+1)+(sqrt(3)-2)/(sqrt...

    Text Solution

    |