Home
Class 9
MATHS
If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sq...

If `x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q))` then find the value of `qx^(2)-2px+q`

A

`0`

B

`1`

C

`-1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = \frac{\sqrt{p+q} + \sqrt{p-q}}{\sqrt{p+q} - \sqrt{p-q}} \) and we need to find the value of \( qx^2 - 2px + q \), we can follow these steps: ### Step 1: Rationalize the expression for \( x \) We start with the expression for \( x \): \[ x = \frac{\sqrt{p+q} + \sqrt{p-q}}{\sqrt{p+q} - \sqrt{p-q}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{p+q} + \sqrt{p-q})(\sqrt{p+q} + \sqrt{p-q})}{(\sqrt{p+q} - \sqrt{p-q})(\sqrt{p+q} + \sqrt{p-q})} \] ### Step 2: Simplify the denominator The denominator simplifies using the difference of squares: \[ (\sqrt{p+q})^2 - (\sqrt{p-q})^2 = (p+q) - (p-q) = 2q \] ### Step 3: Simplify the numerator The numerator becomes: \[ (\sqrt{p+q} + \sqrt{p-q})^2 = (\sqrt{p+q})^2 + 2\sqrt{(p+q)(p-q)} + (\sqrt{p-q})^2 = (p+q) + (p-q) + 2\sqrt{(p+q)(p-q)} \] This simplifies to: \[ 2p + 2\sqrt{(p+q)(p-q)} = 2p + 2\sqrt{p^2 - q^2} \] ### Step 4: Combine the results for \( x \) Now substituting back, we have: \[ x = \frac{2p + 2\sqrt{p^2 - q^2}}{2q} = \frac{p + \sqrt{p^2 - q^2}}{q} \] ### Step 5: Calculate \( x^2 \) Next, we calculate \( x^2 \): \[ x^2 = \left(\frac{p + \sqrt{p^2 - q^2}}{q}\right)^2 = \frac{(p + \sqrt{p^2 - q^2})^2}{q^2} \] Expanding the numerator: \[ (p + \sqrt{p^2 - q^2})^2 = p^2 + 2p\sqrt{p^2 - q^2} + (p^2 - q^2) = 2p^2 - q^2 + 2p\sqrt{p^2 - q^2} \] Thus, \[ x^2 = \frac{2p^2 - q^2 + 2p\sqrt{p^2 - q^2}}{q^2} \] ### Step 6: Substitute \( x \) and \( x^2 \) into \( qx^2 - 2px + q \) Now we substitute \( x^2 \) and \( x \) into the expression \( qx^2 - 2px + q \): \[ qx^2 = q \cdot \frac{2p^2 - q^2 + 2p\sqrt{p^2 - q^2}}{q^2} = \frac{q(2p^2 - q^2 + 2p\sqrt{p^2 - q^2})}{q^2} \] This simplifies to: \[ \frac{2p^2 - q^2 + 2p\sqrt{p^2 - q^2}}{q} \] Now substituting \( -2px \): \[ -2px = -2p \cdot \frac{p + \sqrt{p^2 - q^2}}{q} = \frac{-2p^2 - 2p\sqrt{p^2 - q^2}}{q} \] Combining these: \[ qx^2 - 2px + q = \frac{2p^2 - q^2 + 2p\sqrt{p^2 - q^2} - 2p^2 - 2p\sqrt{p^2 - q^2} + q}{q} \] This simplifies to: \[ \frac{-q^2 + q}{q} = \frac{q - q^2}{q} = 0 \] ### Final Result Thus, the value of \( qx^2 - 2px + q \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise NCERT questions (Exercise 1.6)|3 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) find the value of qx^(2)-2px+q

If p = (sqrt(3q +2) + sqrt(3q-2))/(sqrt(3q + 2) - sqrt(3q-2)) then what is the value of p^(2)- 3pq + 2 ?

x=(sqrt(p^2+q^2)+sqrt(p^2-q^2))/(sqrt(p^2+q^2)-sqrt(p^2-q^2)) then q^2x^2-2p^2x+q^2=? (A)    3    (B)    -1    (C)    -2    (D)    0    

x=(sqrt(p^2+q^2)+sqrt(p^2-q^2))/(sqrt(p^2+q^2)-sqrt(p^2-q^2)) then q^2x^2-2p^2x+q^2=? (A)Â Â Â 3 Â Â Â (B) Â Â Â -1 Â Â Â (C) Â Â Â -2 Â Â Â (D)Â Â Â 0 Â Â Â

If p = (3-sqrt(5))/(3+sqrt(5)) and q = (3+sqrt5)/(3-sqrt(5)) ,find the value of p^(2) + q^(2) .

If x=(sqrt(p^(6)+q^(2))+sqrt(p^(2)-q^(2)))/(sqrt(p^(2)+q^(2))-sqrt(p^(2)-q^(2))) then q^(2)x^(2)-2p^(2)x+q^(2)=?

sqrt(x^(p-q))sqrt(x^(q-r))sqrt(x^(r-p))=1

if x=(sqrt(p^(2)+q^(2))+sqrt(p^(2)-q^(2)))/(sqrt(p^(2)+q^(2))-sqrt(p^(2)-q^(2))), then q^(2)x^(2)-2p^(2)x+q^(2)=?

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-EXERCISE (Multiple choice Question(Level-1))
  1. Evaluate : (27)^(-(1)/(3)).(27)^(-(1)/(3))[(27)^((1)/(3))-(27)^((2)/(3...

    Text Solution

    |

  2. If (2^(m+n))/(2^(n-m))=16,(3^(p))/(3^(n))=81 and a=2^(1//10) then (a^(...

    Text Solution

    |

  3. Find the value of (4)/((216)^(-2//3))-(1)/((256)^(-3//4))

    Text Solution

    |

  4. Find the value of ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(...

    Text Solution

    |

  5. (3^(5x)xx8 1^2xx6561)/(3^(2x))=3^7,t h e nx=

    Text Solution

    |

  6. For an integer n, a student states the following : I. If n is odd, (...

    Text Solution

    |

  7. If sqrt(5)=2.236 and sqrt(10)=3.162 , then the value of (15)/(sqrt(10...

    Text Solution

    |

  8. The value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+..... +(1)/(99xx100) is

    Text Solution

    |

  9. If x=(sqrt(3)+1)/(2) then x^(3)+(1)/(x^(3)) =

    Text Solution

    |

  10. Which one of the following is correct ?

    Text Solution

    |

  11. Simplify root5(x^4 root 4 (x^3 root 3(x^2 sqrtx))).

    Text Solution

    |

  12. If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) then find the value o...

    Text Solution

    |

  13. Which of the following statements is true ?

    Text Solution

    |

  14. Simplify : (3^(-3)xx6^2xxsqrt98)/(5^2 xx (1/25)^(1/3) xx (15)^(-4/3)xx...

    Text Solution

    |

  15. Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(...

    Text Solution

    |

  16. If a=(sqrt(2)+1)/(sqrt(2)-1)"and"b=(sqrt(2)-1)/(sqrt(2)+1) then value ...

    Text Solution

    |

  17. If (3+2sqrt(5))/(4-2sqrt(5))=p+qsqrt(5) where p and q are rational num...

    Text Solution

    |

  18. 2.bar(6)-0.bar(82) is equal to

    Text Solution

    |

  19. If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^...

    Text Solution

    |

  20. If x=(sqrt(3)+1)/(sqrt(3)-1)+(sqrt(3)-1)/(sqrt(3)+1)+(sqrt(3)-2)/(sqrt...

    Text Solution

    |