Home
Class 9
MATHS
Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-...

Simplify : `(3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(2sqrt(3))/(sqrt(6)+2)`

A

`sqrt(2)`

B

`sqrt(3)`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}} + \frac{2\sqrt{3}}{\sqrt{6}+2}\), we will follow these steps: ### Step 1: Rationalize the denominators We will rationalize each term in the expression. 1. For the first term \(\frac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}\): - Multiply the numerator and denominator by the conjugate of the denominator, \(\sqrt{6} + \sqrt{3}\): \[ \frac{3\sqrt{2}(\sqrt{6}+\sqrt{3})}{(\sqrt{6}-\sqrt{3})(\sqrt{6}+\sqrt{3})} \] - The denominator becomes: \[ (\sqrt{6})^2 - (\sqrt{3})^2 = 6 - 3 = 3 \] - So, the first term simplifies to: \[ \frac{3\sqrt{2}(\sqrt{6}+\sqrt{3})}{3} = \sqrt{2}(\sqrt{6}+\sqrt{3}) = \sqrt{12} + \sqrt{6} \] 2. For the second term \(\frac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}}\): - Multiply the numerator and denominator by the conjugate of the denominator, \(\sqrt{6} + \sqrt{2}\): \[ \frac{4\sqrt{3}(\sqrt{6}+\sqrt{2})}{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})} \] - The denominator becomes: \[ (\sqrt{6})^2 - (\sqrt{2})^2 = 6 - 2 = 4 \] - So, the second term simplifies to: \[ \frac{4\sqrt{3}(\sqrt{6}+\sqrt{2})}{4} = \sqrt{3}(\sqrt{6}+\sqrt{2}) = \sqrt{18} + \sqrt{6} \] 3. For the third term \(\frac{2\sqrt{3}}{\sqrt{6}+2}\): - Multiply the numerator and denominator by the conjugate of the denominator, \(\sqrt{6}-2\): \[ \frac{2\sqrt{3}(\sqrt{6}-2)}{(\sqrt{6}+2)(\sqrt{6}-2)} \] - The denominator becomes: \[ (\sqrt{6})^2 - (2)^2 = 6 - 4 = 2 \] - So, the third term simplifies to: \[ \frac{2\sqrt{3}(\sqrt{6}-2)}{2} = \sqrt{3}(\sqrt{6}-2) = \sqrt{18} - 2\sqrt{3} \] ### Step 2: Combine all terms Now we can combine all the simplified terms: \[ (\sqrt{12} + \sqrt{6}) - (\sqrt{18} + \sqrt{6}) + (\sqrt{18} - 2\sqrt{3}) \] ### Step 3: Simplify the expression Combine like terms: 1. The \(\sqrt{6}\) terms: \[ \sqrt{6} - \sqrt{6} = 0 \] 2. The \(\sqrt{18}\) terms: \[ -\sqrt{18} + \sqrt{18} = 0 \] 3. The remaining terms: \[ \sqrt{12} - 2\sqrt{3} \] ### Step 4: Final simplification Now, we know that \(\sqrt{12} = 2\sqrt{3}\): \[ 2\sqrt{3} - 2\sqrt{3} = 0 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise NCERT questions (Exercise 1.6)|3 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

(3+sqrt(6))/(sqrt(3)+sqrt(2))

(2sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3))-(8sqrt(3))/(sqrt(6)+sqrt(2))

Simplify: (7sqrt(3))/(sqrt(10)+sqrt(3))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(3sqrt(2))/(sqrt(15)+3sqrt(2))

Simplify (sqrt(3)+sqrt(2))(sqrt(2)-sqrt(3))

Simplify (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))

MTG IIT JEE FOUNDATION-NUMBER SYSTEMS-EXERCISE (Multiple choice Question(Level-1))
  1. Evaluate : (27)^(-(1)/(3)).(27)^(-(1)/(3))[(27)^((1)/(3))-(27)^((2)/(3...

    Text Solution

    |

  2. If (2^(m+n))/(2^(n-m))=16,(3^(p))/(3^(n))=81 and a=2^(1//10) then (a^(...

    Text Solution

    |

  3. Find the value of (4)/((216)^(-2//3))-(1)/((256)^(-3//4))

    Text Solution

    |

  4. Find the value of ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(...

    Text Solution

    |

  5. (3^(5x)xx8 1^2xx6561)/(3^(2x))=3^7,t h e nx=

    Text Solution

    |

  6. For an integer n, a student states the following : I. If n is odd, (...

    Text Solution

    |

  7. If sqrt(5)=2.236 and sqrt(10)=3.162 , then the value of (15)/(sqrt(10...

    Text Solution

    |

  8. The value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+..... +(1)/(99xx100) is

    Text Solution

    |

  9. If x=(sqrt(3)+1)/(2) then x^(3)+(1)/(x^(3)) =

    Text Solution

    |

  10. Which one of the following is correct ?

    Text Solution

    |

  11. Simplify root5(x^4 root 4 (x^3 root 3(x^2 sqrtx))).

    Text Solution

    |

  12. If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) then find the value o...

    Text Solution

    |

  13. Which of the following statements is true ?

    Text Solution

    |

  14. Simplify : (3^(-3)xx6^2xxsqrt98)/(5^2 xx (1/25)^(1/3) xx (15)^(-4/3)xx...

    Text Solution

    |

  15. Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(...

    Text Solution

    |

  16. If a=(sqrt(2)+1)/(sqrt(2)-1)"and"b=(sqrt(2)-1)/(sqrt(2)+1) then value ...

    Text Solution

    |

  17. If (3+2sqrt(5))/(4-2sqrt(5))=p+qsqrt(5) where p and q are rational num...

    Text Solution

    |

  18. 2.bar(6)-0.bar(82) is equal to

    Text Solution

    |

  19. If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^...

    Text Solution

    |

  20. If x=(sqrt(3)+1)/(sqrt(3)-1)+(sqrt(3)-1)/(sqrt(3)+1)+(sqrt(3)-2)/(sqrt...

    Text Solution

    |