Home
Class 9
MATHS
If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(...

If `N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2))` , then `N+2` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( N = \frac{\sqrt{\sqrt{5}+2} + \sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}} - \sqrt{3 - 2\sqrt{2}} \) and find \( N + 2 \), we will follow these steps: ### Step 1: Simplify the numerator Let: \[ a = \sqrt{\sqrt{5}+2} \quad \text{and} \quad b = \sqrt{\sqrt{5}-2} \] Then the numerator becomes \( a + b \). ### Step 2: Square the numerator To simplify \( a + b \), we will square it: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Calculating \( a^2 \) and \( b^2 \): \[ a^2 = \sqrt{5} + 2 \quad \text{and} \quad b^2 = \sqrt{5} - 2 \] Thus, \[ a^2 + b^2 = (\sqrt{5} + 2) + (\sqrt{5} - 2) = 2\sqrt{5} \] Now, we need to find \( ab \): \[ ab = \sqrt{(\sqrt{5}+2)(\sqrt{5}-2)} = \sqrt{5 - 4} = 1 \] So, \[ 2ab = 2 \cdot 1 = 2 \] Therefore, \[ (a + b)^2 = 2\sqrt{5} + 2 \] ### Step 3: Rewrite the numerator Now we can express the numerator: \[ a + b = \sqrt{2\sqrt{5} + 2} \] ### Step 4: Simplify the denominator The denominator is: \[ \sqrt{\sqrt{5}+1} \] ### Step 5: Substitute back into \( N \) Now substituting back into \( N \): \[ N = \frac{\sqrt{2\sqrt{5} + 2}}{\sqrt{\sqrt{5}+1}} - \sqrt{3 - 2\sqrt{2}} \] ### Step 6: Simplify \( \sqrt{3 - 2\sqrt{2}} \) Notice that: \[ 3 - 2\sqrt{2} = (\sqrt{2} - 1)^2 \] Thus, \[ \sqrt{3 - 2\sqrt{2}} = \sqrt{(\sqrt{2} - 1)^2} = \sqrt{2} - 1 \] ### Step 7: Substitute and simplify \( N \) Now substituting this back into \( N \): \[ N = \frac{\sqrt{2\sqrt{5} + 2}}{\sqrt{\sqrt{5}+1}} - (\sqrt{2} - 1) \] This can be simplified further, but for \( N + 2 \): \[ N + 2 = \frac{\sqrt{2\sqrt{5} + 2}}{\sqrt{\sqrt{5}+1}} - \sqrt{2} + 1 + 2 \] \[ N + 2 = \frac{\sqrt{2\sqrt{5} + 2}}{\sqrt{\sqrt{5}+1}} - \sqrt{2} + 3 \] ### Step 8: Final simplification After careful simplification, we find that: \[ N + 2 = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (long answer type)|5 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

[ If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) then N equals [ (A) 1, (B) 2sqrt(2)-1 (C) (sqrt(5))/(2), (D) (2)/(sqrt(sqrt(5)+1))]]

(sqrt(5)-2)(sqrt(3)-sqrt(5))

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

(2sqrt3+sqrt5)(2sqrt3+sqrt5)

1/(sqrt(2)+sqrt(3)+sqrt(5))+1/(sqrt(2)+sqrt(3)-sqrt(5))

sqrt(3)/sqrt(2) + (sqrt(5)+2)/sqrt(2)

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))