Home
Class 9
MATHS
If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^...

If `(9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27)` , then find m-n .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{9^n \cdot 3^2 \cdot (3^{-n/2})^{-2} - 27^n}{3^{3m} \cdot 2^3} = \frac{1}{27}, \] we will simplify step by step. ### Step 1: Rewrite the terms in the equation First, we can express \(9\) and \(27\) in terms of base \(3\): - \(9 = 3^2\), so \(9^n = (3^2)^n = 3^{2n}\). - \(27 = 3^3\), so \(27^n = (3^3)^n = 3^{3n}\). Now, substituting these into the equation gives: \[ \frac{3^{2n} \cdot 3^2 \cdot (3^{-n/2})^{-2} - 3^{3n}}{3^{3m} \cdot 2^3} = \frac{1}{27}. \] ### Step 2: Simplify the expression Next, simplify the term \((3^{-n/2})^{-2}\): \[ (3^{-n/2})^{-2} = 3^{n}. \] Now substituting this back into the equation gives: \[ \frac{3^{2n} \cdot 3^2 \cdot 3^n - 3^{3n}}{3^{3m} \cdot 2^3} = \frac{1}{27}. \] ### Step 3: Combine the powers of \(3\) Combine the powers of \(3\) in the numerator: \[ 3^{2n} \cdot 3^2 \cdot 3^n = 3^{2n + 2 + n} = 3^{3n + 2}. \] So, the equation now looks like: \[ \frac{3^{3n + 2} - 3^{3n}}{3^{3m} \cdot 2^3} = \frac{1}{27}. \] ### Step 4: Factor the numerator Factor out \(3^{3n}\) from the numerator: \[ 3^{3n}(3^2 - 1) = 3^{3n}(9 - 1) = 3^{3n} \cdot 8. \] Thus, the equation simplifies to: \[ \frac{3^{3n} \cdot 8}{3^{3m} \cdot 2^3} = \frac{1}{27}. \] ### Step 5: Simplify further Since \(2^3 = 8\), we can rewrite the equation as: \[ \frac{3^{3n} \cdot 8}{3^{3m} \cdot 8} = \frac{1}{27}. \] This simplifies to: \[ \frac{3^{3n}}{3^{3m}} = \frac{1}{27}. \] ### Step 6: Rewrite \(27\) in terms of \(3\) Since \(27 = 3^3\), we can rewrite the equation as: \[ 3^{3n - 3m} = 3^{-3}. \] ### Step 7: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 3n - 3m = -3. \] Dividing the entire equation by \(3\): \[ n - m = -1. \] ### Step 8: Solve for \(m\) Rearranging gives: \[ m = n + 1. \] ### Step 9: Find \(m - n\) Now, we can find \(m - n\): \[ m - n = (n + 1) - n = 1. \] Thus, the final answer is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (long answer type)|5 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If (9^(n)xx3^(2)xx(3^(-n//2))^(-2)-(27)^(n))/(3^(3m)xx2^(3))=(1)/(27) , prove that m-n=1.

If (9^(n+2)xx(3^(-(n)/(2)))^(-2)-27^(n))/(3^(3m)xx2^(3)xx10)=(1)/(27) prove

(9^(n)xx3^(2)xx3^(n)-(27)^(n))/((3^(3))^(5)xx2^(3))=(1)/(27)

If (9^nx3^2x(3^(-n/2))^(-2)-(27)^n)/(3^(3m)x2^3)=1/(27), Prove that m-n=1.

if (9^(n)*3^(2)*(3^(-(n)/(2))hat -(-2))-27^(n))/(3^(3m)*2^(3))=(1)/(27) then prove that m-n=1

If (9^(n)x3^(2)x3^(n)-27^(n))/(3^(3m)x2^(3))=(1)/(27), prove that m-n=1

(9^(n)times3^(2)times3^(n)-(27)^(n))/((3^(3))^(5)times2^(3))=(1)/(27)," find the value of "n

if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n