Home
Class 9
MATHS
Find the zeroes of the polynomial x^(3)+...

Find the zeroes of the polynomial `x^(3)+6x^(2)+11x+6` which are integers .

Text Solution

AI Generated Solution

The correct Answer is:
To find the integer zeroes of the polynomial \( f(x) = x^3 + 6x^2 + 11x + 6 \), we will use the trial and error method (also known as the Rational Root Theorem) to test possible integer factors. ### Step 1: Identify possible integer factors The possible integer factors of the constant term (6) are \( \pm 1, \pm 2, \pm 3, \pm 6 \). ### Step 2: Test each factor We will substitute each possible integer into the polynomial to see if it results in zero. 1. **Testing \( x = 1 \)**: \[ f(1) = 1^3 + 6(1^2) + 11(1) + 6 = 1 + 6 + 11 + 6 = 24 \quad (\text{not a zero}) \] 2. **Testing \( x = -1 \)**: \[ f(-1) = (-1)^3 + 6(-1)^2 + 11(-1) + 6 = -1 + 6 - 11 + 6 = 0 \quad (\text{is a zero}) \] Since \( x = -1 \) is a zero, we can factor the polynomial using \( x + 1 \). ### Step 3: Factor the polynomial We can perform polynomial long division or synthetic division to divide \( f(x) \) by \( x + 1 \). #### Synthetic Division: \[ \begin{array}{r|rrrr} -1 & 1 & 6 & 11 & 6 \\ & & -1 & -5 & -6 \\ \hline & 1 & 5 & 6 & 0 \\ \end{array} \] The result is \( x^2 + 5x + 6 \). ### Step 4: Factor the quadratic Now we need to factor \( x^2 + 5x + 6 \): \[ x^2 + 5x + 6 = (x + 2)(x + 3) \] ### Step 5: Write the complete factorization Thus, the complete factorization of the polynomial is: \[ f(x) = (x + 1)(x + 2)(x + 3) \] ### Step 6: Identify all zeroes Setting each factor to zero gives us the zeroes: 1. \( x + 1 = 0 \) → \( x = -1 \) 2. \( x + 2 = 0 \) → \( x = -2 \) 3. \( x + 3 = 0 \) → \( x = -3 \) ### Conclusion The integer zeroes of the polynomial \( x^3 + 6x^2 + 11x + 6 \) are \( -1, -2, \) and \( -3 \). ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 2.1)|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 2.2)|4 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

Find the zeroes of the polynomial 6x^(2)-3

Find the zeroes of the polynomial 6x^(2)-3

Find the zeroes of the polynomial: 6x^(2)-7x-3

Find the zeroes of the polynomial x^(2)+(1)/(6)x-2

Find the zeros of the polynomial p(x) = x^2 - 7x + 6

Find the zeros of the polynomial p(x) = x^2+5x+6

Write the zeros of the polynomial x^(2)-x-6

find the zeroes of given polynomial- x^(3)-4x^(2)+x+6

Find integral roots of the polynomial x^(3)-6x^(2)+11x-6

If x = 2 is one of the zeroes of the polynomial x^3 - 6x^2 + 11x - 6 , which are the other two zeros?