Home
Class 9
MATHS
If x=(4)/(3) is a zero of the polynomial...

If `x=(4)/(3)` is a zero of the polynomial `p(x)=6x^(3)-11x^(2)+kx-20` , then find the value of k .

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that \( x = \frac{4}{3} \) is a zero of the polynomial \( p(x) = 6x^3 - 11x^2 + kx - 20 \), we can follow these steps: ### Step 1: Substitute \( x = \frac{4}{3} \) into the polynomial Since \( x = \frac{4}{3} \) is a zero of the polynomial, we can substitute this value into the polynomial and set it equal to zero. \[ p\left(\frac{4}{3}\right) = 6\left(\frac{4}{3}\right)^3 - 11\left(\frac{4}{3}\right)^2 + k\left(\frac{4}{3}\right) - 20 = 0 \] ### Step 2: Calculate \( \left(\frac{4}{3}\right)^2 \) and \( \left(\frac{4}{3}\right)^3 \) First, we calculate \( \left(\frac{4}{3}\right)^2 \) and \( \left(\frac{4}{3}\right)^3 \): \[ \left(\frac{4}{3}\right)^2 = \frac{16}{9} \] \[ \left(\frac{4}{3}\right)^3 = \frac{64}{27} \] ### Step 3: Substitute these values back into the polynomial Now we substitute these values back into the polynomial equation: \[ p\left(\frac{4}{3}\right) = 6\left(\frac{64}{27}\right) - 11\left(\frac{16}{9}\right) + k\left(\frac{4}{3}\right) - 20 = 0 \] ### Step 4: Simplify the equation Now, simplify each term: 1. \( 6 \cdot \frac{64}{27} = \frac{384}{27} \) 2. \( 11 \cdot \frac{16}{9} = \frac{176}{9} = \frac{528}{27} \) (converting to a common denominator) 3. \( k \cdot \frac{4}{3} = \frac{4k}{3} = \frac{36k}{27} \) (converting to a common denominator) 4. \( -20 = -20 = -\frac{540}{27} \) (converting to a common denominator) Now, substituting these into the equation gives: \[ \frac{384}{27} - \frac{528}{27} + \frac{36k}{27} - \frac{540}{27} = 0 \] ### Step 5: Combine the fractions Combine the fractions: \[ \frac{384 - 528 + 36k - 540}{27} = 0 \] This simplifies to: \[ \frac{36k - 684}{27} = 0 \] ### Step 6: Solve for \( k \) Setting the numerator equal to zero: \[ 36k - 684 = 0 \] \[ 36k = 684 \] \[ k = \frac{684}{36} = 19 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{19} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 2.1)|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 2.2)|4 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

If x=4//3 is a zero of the polynomial f(x)=6x^(3)-11x^(2)+kx-20 , then find the value of k.

if x=(4)/(3) is a zero of the polynomial f(x)=2x^(3)-11x^(2)+kx-20, find the value of k

if x=(4)/(3) is a zero of the polynomial f(x)=2x^(3)-11x^(2)+kx-20, find the value of k

If x=(4)/(3) is a root of the polynomial f(x)=6x^(3)-11x^(2)+kx-20, find the value of k.

If x=(4)/(3) is a root of the polynomial f(x)=6x^(3)-11x^(2)+kx-20, find the value of k

If x=-(1)/(2) is a zero of the polynomial p(x)=8x^(3)-ax^(2)-x+2, find the value of

If ^(prime3)3' is a zero of the polynomial p(x)=2x^(3)-kx+3, then find the value of k:

Find the zeroes of the polynomial 6x^(2)-3

Find the zeroes of the polynomial 6x^(2)-3

If the zeros of the polynomial f(x)=x^(3)-12x^(2)+39x+k are in A.P.find the value of k.