Home
Class 9
MATHS
If a^(2)+b^(2)+c^(2)=20 and a+b+c=9 , fi...

If `a^(2)+b^(2)+c^(2)=20` and `a+b+c=9` , find ab+bc+ca .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ab + bc + ca \) given the equations: 1. \( a^2 + b^2 + c^2 = 20 \) 2. \( a + b + c = 9 \) We can use the identity that relates these quantities: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] ### Step 1: Calculate \( (a + b + c)^2 \) From the second equation, we have: \[ a + b + c = 9 \] Now, squaring both sides: \[ (a + b + c)^2 = 9^2 = 81 \] ### Step 2: Substitute into the identity Now we can substitute the values we have into the identity: \[ 81 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] Substituting \( a^2 + b^2 + c^2 = 20 \): \[ 81 = 20 + 2(ab + bc + ca) \] ### Step 3: Rearrange the equation Now, we will isolate \( 2(ab + bc + ca) \): \[ 81 - 20 = 2(ab + bc + ca) \] \[ 61 = 2(ab + bc + ca) \] ### Step 4: Solve for \( ab + bc + ca \) Now, divide both sides by 2: \[ ab + bc + ca = \frac{61}{2} = 30.5 \] ### Final Answer Thus, the value of \( ab + bc + ca \) is: \[ \boxed{30.5} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 2.1)|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 2.2)|4 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)+c^(2)=20 and a+b+c=0, find ab+bc+ca

If a^(2)+b^(2)+c^(2)=20 and a+b+c=0 find ab+bc+ca

if a^(2)+b^(2)+c^(2)=20 and a+b+c=0 then find ab+bc+ca

If a^(2)+b^(2)+c^(2)=250 and ab+bc+ca=3 find a+b+c

If a^(2)+b^(2)+c^(2)=250 and ab+bc+ca=3 find a+b+c

If a^(2)+b^(2)+c^(2)=250 and ab+bc+ca = 3 , find a+b+c .

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a^(2)+b^(2)+c^(2)=154 and ab+bc + ca=-5 , find a+b+c.

If a^(2)+b^(2)+c^(2)=24 and ab+bc+ca=-4, then find a+b+c