Home
Class 9
MATHS
Factorise : p^(3)(q-r)^(3)+q^(3)(r-p)^(3...

Factorise : `p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)`

A

`2pq(p+q)(q+r)(r-p)`

B

`3pqr(p-q)(r-q)(r-p)`

C

`2pqr(p-q)(q-r)(p-r)`

D

`3pqr(p-q)(q-r)(r-p)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( p^3(q - r)^3 + q^3(r - p)^3 + r^3(p - q)^3 \), we can use the identity for the sum of cubes. The identity states that if \( a + b + c = 0 \), then: \[ a^3 + b^3 + c^3 = 3abc \] ### Step-by-Step Solution: 1. **Identify \( a, b, c \)**: - Let \( a = p(q - r) \) - Let \( b = q(r - p) \) - Let \( c = r(p - q) \) 2. **Check if \( a + b + c = 0 \)**: \[ a + b + c = p(q - r) + q(r - p) + r(p - q) \] Expanding this: \[ = pq - pr + qr - qp + rp - rq \] Rearranging the terms: \[ = (pq - qp) + (qr - rq) + (rp - pr) = 0 \] Since \( a + b + c = 0 \), we can apply the identity. 3. **Apply the identity**: According to the identity: \[ a^3 + b^3 + c^3 = 3abc \] Therefore, \[ p^3(q - r)^3 + q^3(r - p)^3 + r^3(p - q)^3 = 3 \cdot p(q - r) \cdot q(r - p) \cdot r(p - q) \] 4. **Calculate \( abc \)**: \[ abc = p(q - r) \cdot q(r - p) \cdot r(p - q) \] 5. **Final Factorization**: Thus, the expression can be factored as: \[ = 3pqr(q - r)(r - p)(p - q) \] ### Final Answer: The factorized form of the expression \( p^3(q - r)^3 + q^3(r - p)^3 + r^3(p - q)^3 \) is: \[ 3pqr(q - r)(r - p)(p - q) \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple choice Question (Level-1))|35 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

Factorize : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Factorise : (p-q)^(3)+(q-r)^(3)+(r-p)^(3)

Factorise (p-q)^3+(q-r)^3+(r-p)^3 .

If p.q,r are distinct,then (q-r)x+(r-p)y+(p-q)=0 and (q^(3)-r^(3))x+(r^(3)-p^(3))y+(p^(3)-q^(3))=0 represents the same line if

If (x+y)/(p^(3)-q^(3)) = (y+z)/(q^(3)-r^(3)) = (z+x)/(r^(3)-p^(3)) , then prove that x + y + z = 0.

If p+q+r=9 then (3-p)^(3)+(3-q)6(3)+(3-r)^(3) is :

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

(3q + 7 p^(2) - 2r^(3) + 4) - (4 p^(2) - 2q + 7r^(3) - 3) = ?