Home
Class 9
MATHS
If x+y=5 and xy=6 , then the value of x^...

If `x+y=5` and `xy=6` , then the value of `x^(3)+y^(3)` is

A

`35`

B

`45`

C

`30`

D

`125`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^3 + y^3 \) given that \( x + y = 5 \) and \( xy = 6 \), we can use the formula for the sum of cubes: \[ x^3 + y^3 = (x + y)^3 - 3xy(x + y) \] ### Step-by-step solution: 1. **Identify the values:** - We have \( x + y = 5 \) and \( xy = 6 \). 2. **Calculate \( (x + y)^3 \):** \[ (x + y)^3 = 5^3 = 125 \] 3. **Calculate \( 3xy(x + y) \):** \[ 3xy(x + y) = 3 \cdot 6 \cdot 5 = 90 \] 4. **Substitute into the formula:** \[ x^3 + y^3 = (x + y)^3 - 3xy(x + y) \] \[ x^3 + y^3 = 125 - 90 \] 5. **Calculate the final result:** \[ x^3 + y^3 = 35 \] Thus, the value of \( x^3 + y^3 \) is **35**.
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple choice Question (Level-1))|35 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

If (x+y)=13 and xy=36 , then the value of (x^(3)+y^(3)) is :

If x+y=3 and x-y=1 , then the value of xy is

If x-y =4 and xy=45 , then the value of (x^3 - y^3) is :

If 2x+3y=13 and xy=6, find the value of 3x^(3)+27y^(3)

If 2x+3y=13 and xy=6, find the value of 8x^(3)+27y^(3)

If x+y=1 then the value of (x^(3)+y^(3)+3xy) is

If (x+y)=13 and xy=36 then the value of (x^3+y^3) is: