Home
Class 9
MATHS
Factorise : (p-q)^(3)+(q-r)^(3)+(r-p)^(3...

Factorise : `(p-q)^(3)+(q-r)^(3)+(r-p)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \((p-q)^{3} + (q-r)^{3} + (r-p)^{3}\), we can use the identity for the sum of cubes. The identity states that: \[ A^3 + B^3 + C^3 - 3ABC = (A + B + C)(A^2 + B^2 + C^2 - AB - BC - CA) \] In our case, we can let: - \(A = p - q\) - \(B = q - r\) - \(C = r - p\) Now, we can observe that: \[ A + B + C = (p - q) + (q - r) + (r - p) \] Simplifying this, we have: \[ A + B + C = p - q + q - r + r - p = 0 \] Since \(A + B + C = 0\), we can apply the identity: \[ A^3 + B^3 + C^3 = 3ABC \] Now we can calculate \(ABC\): \[ ABC = (p - q)(q - r)(r - p) \] Thus, we have: \[ (p - q)^{3} + (q - r)^{3} + (r - p)^{3} = 3(p - q)(q - r)(r - p) \] So the final factorized form of the expression is: \[ 3(p - q)(q - r)(r - p) \] ### Summary of Steps: 1. Identify \(A\), \(B\), and \(C\) as \(p - q\), \(q - r\), and \(r - p\). 2. Calculate \(A + B + C\) and show it equals zero. 3. Use the identity for the sum of cubes to express the original expression in terms of \(ABC\). 4. Calculate \(ABC\) and substitute back into the identity. 5. Write the final factorized form.
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Short answer type))|10 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Long answer type))|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Comprehension type)|6 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

Factorise : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Factorize : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Add p(p-q),q(q-r) and r(r-p)

If p+q+r=9 then (3-p)^(3)+(3-q)6(3)+(3-r)^(3) is :

Suppose p, q, r are such that p+q=r and pqr = 30 , then what is the value of p^(3)+q^(3)-r^(3) ?

If p.q,r are distinct,then (q-r)x+(r-p)y+(p-q)=0 and (q^(3)-r^(3))x+(r^(3)-p^(3))y+(p^(3)-q^(3))=0 represents the same line if

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

If a,b,c denote the sides of triangleABC , show that the value of the expression, a^3 (p-q)(p-r)+b^2(q-r)+b^2(q-r)(q-p)+c^2(r-p)(r-q) cannot be negative where p,q,r in R .