Home
Class 9
MATHS
Factorise : x^(2)-x((a^(2)-1)/(a))-1...

Factorise : `x^(2)-x((a^(2)-1)/(a))-1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 - x\left(\frac{a^2 - 1}{a}\right) - 1 \), we will follow these steps: ### Step 1: Eliminate the fraction by multiplying through by \( a \) We start with the expression: \[ x^2 - x\left(\frac{a^2 - 1}{a}\right) - 1 \] To eliminate the fraction, we multiply the entire expression by \( a \): \[ a \cdot (x^2) - a \cdot \left(x\left(\frac{a^2 - 1}{a}\right)\right) - a \cdot 1 \] This simplifies to: \[ ax^2 - x(a^2 - 1) - a \] ### Step 2: Rewrite the expression Now we can rewrite the expression as: \[ ax^2 - x(a^2 - 1) - a \] ### Step 3: Rearrange the expression We can rearrange it to group the terms: \[ ax^2 - x(a^2 - 1) - a = ax^2 - (a^2 - 1)x - a \] ### Step 4: Factor by grouping Next, we will factor by grouping. We can look for two numbers that multiply to \( -a \cdot (a^2 - 1) \) and add to \( 0 \). The expression can be factored as: \[ a(x^2 - x \cdot \frac{(a^2 - 1)}{a} - 1) \] ### Step 5: Factor the quadratic expression Now we can factor the quadratic expression \( x^2 - x\left(\frac{(a^2 - 1)}{a}\right) - 1 \). This can be factored as: \[ (x - 1)(x + \frac{(a^2 - 1)}{a}) \] ### Final Answer Thus, the fully factored form of the original expression is: \[ a(x - 1)(x + \frac{(a^2 - 1)}{a}) \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Short answer type))|10 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Long answer type))|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Comprehension type)|6 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(4)-1

Factorise: x^(2)-36

Factorise : x^(2)-y^(2)-2x+1

Factorise : x^(4)-3x^(2)+2

Factorise :x^(2)+5x+6

Factorise: 64-x ^(2)

Factorise 12x^(2)-7x+1

factorise 9x^(2)-6x+1

Factorise 6-x-x^2

Factorise 3x^(2)+7x+2