Home
Class 9
MATHS
If p(x)=x^(2)-2sqrt(2)x+1, then p(2sqrt(...

If `p(x)=x^(2)-2sqrt(2)x+1`, then `p(2sqrt(2))`=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the polynomial \( p(x) = x^2 - 2\sqrt{2}x + 1 \) at \( x = 2\sqrt{2} \). ### Step-by-Step Solution: 1. **Substitute \( x \) with \( 2\sqrt{2} \)**: \[ p(2\sqrt{2}) = (2\sqrt{2})^2 - 2\sqrt{2}(2\sqrt{2}) + 1 \] 2. **Calculate \( (2\sqrt{2})^2 \)**: \[ (2\sqrt{2})^2 = 2^2 \cdot (\sqrt{2})^2 = 4 \cdot 2 = 8 \] 3. **Calculate \( -2\sqrt{2}(2\sqrt{2}) \)**: \[ -2\sqrt{2}(2\sqrt{2}) = -4 \cdot 2 = -8 \] 4. **Combine the results**: \[ p(2\sqrt{2}) = 8 - 8 + 1 \] 5. **Simplify the expression**: \[ p(2\sqrt{2}) = 0 + 1 = 1 \] Thus, the value of \( p(2\sqrt{2}) \) is \( 1 \). ### Final Answer: \[ p(2\sqrt{2}) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Long answer type))|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

(i) If p(x)=3x^(2)-5x+6 , find p(2) . (ii) If q(x)=x^(2)-2sqrt(2)x+1 , find q(2sqrt(2)) . (iii) If r(x)=5x-4x^(2)+3 find r(-1) .

If p(x)=x^2-5sqrt5x+1 then p(sqrt5)=

P=(124-32sqrt(15))^((1)/(4)),q=(x^(4)+(1)/(x^(4))) where x=sqrt(3+2sqrt(2)), then ((q-p^(2))/(sqrt(15))) is

14.Determine if (x+1) is a factor of p(x)=x^(3)-x^(2)-(2-sqrt(2))x-sqrt(2)15. find the value of k if (x-1) is a factor of p(X)=kx^(2)-3x+k

If sqrt(2) is a zero of p(x)=6x^(3)+sqrt(2)x^(2)-10x-4sqrt(2), find the remaining zeros

Verify whether the following are zeroes of the polynomial, indicated against them . (i) p(x)=3x+1,x=-(1)/(3) (ii) p(x)=5x-pi,x=(4)/(5) (iii) p(x)=x^(2)-1,x=1,-1 (iv) p(x)=(x+1),(x-2),x=-1,2 (v) p(x)=x^(2),x=0 (vi) p(x)=lx+m,x=(-m)/(l) (vii) p(x)=3x^(2)-1,x=-(1)/(sqrt(3)),(2)/(sqrt(3)) (viii) p(x)=2x+1,x=(1)/(2)

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=7x^(2)-4sqrt(2)x-6,g(x)=x-sqrt(2)

Find the value of k, if x-1 is a factor of p(x) in each of the following cases: (i) p(x)=x^2+x+k (ii) p(x)=2x^2+k x+sqrt(2) (iii) p(x)=k x^2-sqrt(2)x+1 (iv) p(x)=k x^2-3x+k

check wheather the given values are zeros or not p(x)=3x^(2)-1,x=-(1)/(sqrt(3));(2)/(sqrt(3))