Home
Class 9
MATHS
Value of (a^(3)+b^(3)+c^(3)-3abc)/(ab+bc...

Value of `(a^(3)+b^(3)+c^(3)-3abc)/(ab+bc+ca-a^(2)-b^(2)-c^(2))` , when `a=-5, b=-6, c=10` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \frac{a^3 + b^3 + c^3 - 3abc}{ab + bc + ca - a^2 - b^2 - c^2} \] when \( a = -5 \), \( b = -6 \), and \( c = 10 \), we can follow these steps: ### Step 1: Calculate \( a^3 + b^3 + c^3 \) First, we calculate each cube: - \( a^3 = (-5)^3 = -125 \) - \( b^3 = (-6)^3 = -216 \) - \( c^3 = (10)^3 = 1000 \) Now, sum these values: \[ a^3 + b^3 + c^3 = -125 - 216 + 1000 = 659 \] ### Step 2: Calculate \( 3abc \) Next, we calculate \( 3abc \): \[ abc = (-5) \cdot (-6) \cdot (10) = 300 \] Thus, \[ 3abc = 3 \cdot 300 = 900 \] ### Step 3: Calculate the numerator Now we can find the numerator: \[ a^3 + b^3 + c^3 - 3abc = 659 - 900 = -241 \] ### Step 4: Calculate \( ab + bc + ca \) Now, we calculate each product: - \( ab = (-5) \cdot (-6) = 30 \) - \( bc = (-6) \cdot (10) = -60 \) - \( ca = (10) \cdot (-5) = -50 \) Now, sum these values: \[ ab + bc + ca = 30 - 60 - 50 = -80 \] ### Step 5: Calculate \( a^2 + b^2 + c^2 \) Next, we calculate the squares: - \( a^2 = (-5)^2 = 25 \) - \( b^2 = (-6)^2 = 36 \) - \( c^2 = (10)^2 = 100 \) Now, sum these values: \[ a^2 + b^2 + c^2 = 25 + 36 + 100 = 161 \] ### Step 6: Calculate the denominator Now we can find the denominator: \[ ab + bc + ca - a^2 - b^2 - c^2 = -80 - 161 = -241 \] ### Step 7: Calculate the final value Now we can substitute the values into the original expression: \[ \frac{-241}{-241} = 1 \] ### Final Answer The value of the expression is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems (Long answer type))|5 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

The value of (a^3+b^3+c^3-3abc)/(ab+bc+ca-a^2-b^2-c^2) is (where a = -5, b= -6, c = 10)

If a=-5,b=-6 and c=10, then the value of (a^(3)+b^(3)+c^(3)-3abc)/(ab+bc+ca-a^(2)-b^(2)-c^(2))

Using a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

If a= 20, b= 25, c= 15 find (a^(3) +b^(3) + c^(3)- 3 abc)/(a^(2) + b^(2) + c^(2) - ab- bc - ca) = ?

Important Identity -(a^(3)+b^(3)+c^(3)-3abc)=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

Find the value of a^(3)+b^(3)+c^(3)-3abc if 1) a+b+c=8,ab+bc+ca=19 2) a+b+c=5,a^(2)+b^(2)+c^(2)=11