Home
Class 9
MATHS
ABC is a right triangle with AB = AC.If ...

ABC is a right triangle with AB = AC.If bisector of `angle A ` meet BC at D then prove that BC =2 AD .

Promotional Banner

Topper's Solved these Questions

  • FOOTSTEPS TOWARDS CBSE BOARD

    MTG IIT JEE FOUNDATION|Exercise PART-B (SECTION-IV)|4 Videos
  • FOOTSTEPS TOWARDS CBSE BOARD

    MTG IIT JEE FOUNDATION|Exercise PART-A (SECTION-II)|16 Videos
  • FOOTSTEPS TOWARDS (JEE MAIN)

    MTG IIT JEE FOUNDATION|Exercise Section B (Numerical Value Type Questions)|10 Videos
  • HERON'S FORMULA

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|7 Videos

Similar Questions

Explore conceptually related problems

In a tringle ABC, AB = AC and bisector of angle A meets BC at D. Prove that : (i) DeltaABD cong DeltaACD (ii) AD is perpendicular to BC.

Let ABC be a triangle such that AB = 15 and AC = 9. The bisector of angleBAC meets BC in D. If angleACB = 2angleABC , then BD is

In triangle ABC , angle A = 90^@ , AD is the bisector of angle A meeting BC at D and DE bot AC at E. If AB =10cm and AC = 15 cm, then the length of DE, in cm is: triangle ABC में angle A=90^@ , AD, angle A का द्विभाजक है, जो BC से D पर मिलता है, और DE bot AC से E पर मिलता है। यदि AB = 10 cm और AC= 15 cm है, तो DE की लंबाई(cm) है,

Let triangle ABC be an isosceles with AB=AC. Suppose that the angle bisector of its angle B meets the side AC at a point D and that BC=BD+AD . Measure of the angle A in degrees, is :

In Fig.3,ABC is a right triangle,right angled at C and D is the mid-point of BC.Prove that AB^(2)=4AD^(2)-3AC^(2)

Delta ABC is a right triangle right angled at A such that AB=AC and bisector of /_C intersects the side AB at D.Prove that AC+AD=BC .

In a triangle ABC, angle bisector of angle BAC cut the side BC at D and meet the circumcircle of Delta ABC at E , then find AB .AC+DE. AE.