Home
Class 8
MATHS
root3(4(12)/125) equals...

`root3(4(12)/125)` equals

A

`1(3)/5`

B

`1(2)/5`

C

`7(1)/5`

D

`7(2)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sqrt[3]{\frac{4 \cdot 12}{125}} \), we can follow these steps: ### Step 1: Simplify the expression inside the cube root First, we need to calculate the numerator \( 4 \cdot 12 \): \[ 4 \cdot 12 = 48 \] So, we rewrite the expression: \[ \sqrt[3]{\frac{48}{125}} \] ### Step 2: Factor the numerator and the denominator Next, we can factor both the numerator and the denominator: - The number \( 48 \) can be factored as \( 16 \cdot 3 \) or \( 4 \cdot 12 \) or \( 2^4 \cdot 3 \). - The number \( 125 \) can be factored as \( 5^3 \). Thus, we can express \( 48 \) as: \[ 48 = 2^4 \cdot 3 \] So we have: \[ \sqrt[3]{\frac{2^4 \cdot 3}{5^3}} \] ### Step 3: Rewrite the cube root We can separate the cube root of the numerator and the denominator: \[ \sqrt[3]{\frac{2^4 \cdot 3}{5^3}} = \frac{\sqrt[3]{2^4 \cdot 3}}{\sqrt[3]{5^3}} = \frac{\sqrt[3]{2^4} \cdot \sqrt[3]{3}}{5} \] ### Step 4: Simplify \( \sqrt[3]{2^4} \) We know that \( 2^4 = 2^3 \cdot 2 = 8 \cdot 2 \), thus: \[ \sqrt[3]{2^4} = \sqrt[3]{8 \cdot 2} = \sqrt[3]{8} \cdot \sqrt[3]{2} = 2 \cdot \sqrt[3]{2} \] ### Step 5: Combine the results Now, substituting back, we have: \[ \frac{2 \cdot \sqrt[3]{2} \cdot \sqrt[3]{3}}{5} = \frac{2 \cdot \sqrt[3]{6}}{5} \] ### Step 6: Final expression Thus, we can express the final result as: \[ \frac{2 \cdot \sqrt[3]{6}}{5} \] ### Step 7: Convert to mixed number (if needed) If we need to express this as a mixed number, we can calculate: \[ \sqrt[3]{6} \approx 1.817 \quad \text{(approximately)} \] Thus, \[ \frac{2 \cdot 1.817}{5} \approx \frac{3.634}{5} \approx 0.7268 \] This can be expressed as \( 1 \frac{3}{5} \) in terms of a mixed number. ### Final Answer The final answer is: \[ \sqrt[3]{\frac{48}{125}} = \frac{2 \cdot \sqrt[3]{6}}{5} \approx 1 \frac{3}{5} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise.(Multiple Choice Question.) (LEVEL-2)|15 Videos
  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type.)|5 Videos
  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section. (Exercise 7.2. ) |2 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

root3(144) xx root3(12) equals

Evaluate root3((-27)/(125))

The product root3(2).root4(2). root12(32) equal to

root4(root3(2^(2))) equal to

if x=root3 (13(103)/125) , then the value of x is