Home
Class 8
MATHS
16/9 xx (-1(1)/2)^(3)=...

`16/9 xx (-1(1)/2)^(3)=`

A

-12

B

-6

C

`-8/3`

D

`8/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{16}{9} \times \left(-1 \frac{1}{2}\right)^3 \), we will follow these steps: ### Step 1: Convert the mixed number to an improper fraction The mixed number \(-1 \frac{1}{2}\) can be converted to an improper fraction: \[ -1 \frac{1}{2} = -\left(1 \times 2 + 1\right) / 2 = -\frac{3}{2} \] ### Step 2: Cube the improper fraction Now we need to cube \(-\frac{3}{2}\): \[ \left(-\frac{3}{2}\right)^3 = -\frac{3^3}{2^3} = -\frac{27}{8} \] ### Step 3: Multiply by \(\frac{16}{9}\) Next, we multiply \(\frac{16}{9}\) by \(-\frac{27}{8}\): \[ \frac{16}{9} \times -\frac{27}{8} = -\frac{16 \times 27}{9 \times 8} \] ### Step 4: Simplify the multiplication Now we simplify the multiplication: \[ - \frac{16 \times 27}{9 \times 8} = -\frac{432}{72} \] ### Step 5: Simplify the fraction Now we simplify \(-\frac{432}{72}\): \[ - \frac{432 \div 72}{72 \div 72} = -6 \] ### Final Answer Thus, the final answer is: \[ -6 \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise.(Multiple Choice Question.) (LEVEL-2)|15 Videos
  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type.)|5 Videos
  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section. (Exercise 7.2. ) |2 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

If (16)^(9) div (16)^(4) xx (16)^(3) = 16^(x) , then x is equal to

Simplify : [ ((- 3 )/( 2) xx (4)/(5) ) + ((9)/(5) xx (-10)/( 3)) - ((1)/(2)xx (3)/(4)) ] div [ ((21)/( 9) xx (3)/(7)) +((7)/(8) xx (16)/(14)) ]

1+(2)/(3)xx(1)/(2)+(2)/(3)xx(5)/(6)xx(1)/(2^(2))+(2)/(3)xx(5)/(6)xx(8)/(9)xx(8)/(9)xx(1)/(2^(3))+...oo

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

Evaluate: (((8)/(9))^(2)xx(-3)^(7)xx((1)/(2))^(3))/((27)^(2)xx64)

The reciprocal of ((1)/(2) xx 12 ) + ((1)/(3) + (1)/(9)) is 3k. Find numerator of k.

Prove that ((81)/(16))^(-(4)/(4))xx{((25)/(9))^(-(3)/(2))-:((5)/(2))^(-3)}=1

What is the value of ((3)/(4) div (9)/(32) +(4)/(3) xx (2)/(3) " of "(27)/(16))/((1)/(2) xx ((8)/(2) -2) div (4)/(9) +((1)/(3)+(1)/(6))) ? (a) (10)/(3) (b) (13)/(2) (c) (25)/(2) (d) (31)/(2)