Home
Class 8
MATHS
The value of (root3(8)+root3(27)-root3(3...

The value of `(root3(8)+root3(27)-root3(343))/((2)^(2)-3)` is

A

7

B

-2

C

8

D

-5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt[3]{8} + \sqrt[3]{27} - \sqrt[3]{343}) / (2^2 - 3)\), we will break it down step by step. ### Step 1: Calculate the cube roots 1. **Calculate \(\sqrt[3]{8}\)**: \[ \sqrt[3]{8} = \sqrt[3]{2^3} = 2 \] 2. **Calculate \(\sqrt[3]{27}\)**: \[ \sqrt[3]{27} = \sqrt[3]{3^3} = 3 \] 3. **Calculate \(\sqrt[3]{343}\)**: \[ \sqrt[3]{343} = \sqrt[3]{7^3} = 7 \] ### Step 2: Substitute the values back into the expression Now, substitute the calculated values into the expression: \[ \sqrt[3]{8} + \sqrt[3]{27} - \sqrt[3]{343} = 2 + 3 - 7 \] ### Step 3: Simplify the numerator Now simplify the numerator: \[ 2 + 3 - 7 = 5 - 7 = -2 \] ### Step 4: Calculate the denominator Now calculate the denominator: \[ 2^2 - 3 = 4 - 3 = 1 \] ### Step 5: Divide the numerator by the denominator Now divide the simplified numerator by the denominator: \[ \frac{-2}{1} = -2 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Assertion & Reason Type.)|5 Videos
  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Comprehension Type.) |5 Videos
  • CUBES AND CUBE ROOTS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Question.) (LEVEL-1)|35 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Cornet|15 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|7 Videos

Similar Questions

Explore conceptually related problems

root3((-343)/(729))=?

The value of root3(531441)/root3(729) is

The value of root3(343/1331) is

The value of (sqrt63 xx sqrt7)/(root3(27)) is

The value of (root(3)(3.5) + root(3)(2.5)) { (root(3)(3.5) )^2 - root(3) (8.75) + ( root(3)(2.5))^2} is

The value of (root3(125) xx root3(64))/(root3(125)-root3(64)) is

Find the value of root3(512) xx root3(3.375)