Home
Class 10
MATHS
If the polynomial f(x)=a x^3+b x-c is di...

If the polynomial `f(x)=a x^3+b x-c` is divisible by the polynomial `g(x)=x^2+b x+c` , then `a b=` (a) `1` (b) `1/c` (c) `-1` (d) `-1/c`

A

`c=2b^(2)`

B

ab=1

C

ac=2b

D

All of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the Following )|2 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason Type Directions :)|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple Choice Questions) LEVEL-1|35 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 3.7)|18 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|26 Videos

Similar Questions

Explore conceptually related problems

If the polynomial f(x)=ax^(3)+bx-c is divisible by the polynomial g(x)=x^(2)+bx+c, then ab=( a) 1 (b) (1)/(c) (c) -1(d)-(1)/(c)

The polynomial f(x)=ax^(3)+bx-c is divisible by the polynomials g(x)=x^(2)+bx+c,c!=0, if ac=lambda b then determine lambda.

If alpha,beta are the zeros of polynomial f(x)=x^(2)-p(x+1)-c, then (alpha+1)(beta+1)=(a)c-1(b)1-c(c)c(d)1+c

If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(x^(3))+x^(2)g(x^(6)) is divisible by x^(2)+x+1, then ( a )f(1)=g(1) (b) f(1)=1g(1)( ) h(1)=0 (d) all of these

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

If x+1 is a factor of the polynomial 2x^(2)+kx, then k=-2(b)-3(c)4(d)2

If x=1and x=2 are the zeros of polynomial P(x)=x^(2)+ax^(2)+bx+c where a+b=1 then Value of P(3) is

If a,b are the zeroes of f(x)=x^(2)+3x+1 and c, d are the zero of g(x)=x^(2)+4x+1 then the value E=((a-c)(b-c)(a+a)(b+d))/(2) is

If alpha,beta are the zeros of the polynomial f(x)=x^(2)-p(x+1)-c such that (alpha+1)(beta+1)=0, then c=( a )1(b)0(c)-1(d)2

If the line y=x touches the curve y=x^2+b x+c at a point (1,\ 1) then b=1,\ c=2 (b) b=-1,\ c=1 (c) b=2,\ c=1 (d) b=-2,\ c=1