Home
Class 10
MATHS
If alpha,beta,gamma are the zeroes of th...

If `alpha,beta,gamma` are the zeroes of the polynomial `x^(3)+px^(2)+qx+r`, then find `(1)/(alphabeta)+(1)/(betagamma)+(1)/(gammaalpha)`

A

`(p)/(r)`

B

`-(p)/(r)`

C

`(q)/(r)`

D

`-(q)/(r)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the Following )|2 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason Type Directions :)|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple Choice Questions) LEVEL-1|35 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 3.7)|18 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|26 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)=

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(a)/(gamma alpha)=(r)/(p)( b) (p)/(r)(c)-(p)/(r)(d)-(r)/(p)

If alpha, beta, gamma are the zeros of the polynomial 2x^(3)+ x^(2) - 13 x+ 6 then alpha beta gamma = ?

If alpha,beta,gamma are the zeroes of the polynomial f(x)=2x^(3)+6x^(2)-4x+9, find the value of (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)

If alpha, beta, gamma are the zeros of the polynomial x^(3)-6x^(2) -x+ 30 then (alpha beta+beta gamma + gamma alpha) = ?

If alpha, beta are the zeros of the polynomial f(x) = x^2 – 3x + 2 , then find 1/alpha + 1/beta .

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha, beta are the zeros of the polynomial 4x ^(2)+3x+7 then find the value of (1)/(alpha) + (1)/(beta).

If alpha,beta,gamma are the zeroes of the polynomial f(x)=x^(3)-5x^(2)-2x+24 such that alphabeta=12 , then