Home
Class 10
MATHS
If alpha and beta be the zeroes of the p...

If `alpha` and `beta` be the zeroes of the polynomial `p(x)=x^(2)-5x+2`, find the value of `(1)/(alpha)+(1)/(beta)-3alphabeta.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\alpha} + \frac{1}{\beta} - 3\alpha\beta \) where \( \alpha \) and \( \beta \) are the zeroes of the polynomial \( p(x) = x^2 - 5x + 2 \). ### Step-by-Step Solution: 1. **Identify the coefficients of the polynomial**: The polynomial is given as \( p(x) = x^2 - 5x + 2 \). Here, we can identify: - \( a = 1 \) - \( b = -5 \) - \( c = 2 \) 2. **Calculate the sum and product of the roots**: Using Vieta's formulas: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} = -\frac{-5}{1} = 5 \) - The product of the roots \( \alpha \beta = \frac{c}{a} = \frac{2}{1} = 2 \) 3. **Find \( \frac{1}{\alpha} + \frac{1}{\beta} \)**: We can express \( \frac{1}{\alpha} + \frac{1}{\beta} \) as: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} = \frac{\alpha + \beta}{\alpha \beta} \] Substituting the values we found: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{5}{2} \] 4. **Calculate \( 3\alpha\beta \)**: We already found \( \alpha \beta = 2 \), so: \[ 3\alpha\beta = 3 \times 2 = 6 \] 5. **Combine the results**: Now we substitute back into the expression we need to evaluate: \[ \frac{1}{\alpha} + \frac{1}{\beta} - 3\alpha\beta = \frac{5}{2} - 6 \] To perform the subtraction, convert 6 to a fraction with a denominator of 2: \[ 6 = \frac{12}{2} \] Therefore: \[ \frac{5}{2} - \frac{12}{2} = \frac{5 - 12}{2} = \frac{-7}{2} \] 6. **Final Answer**: The value of \( \frac{1}{\alpha} + \frac{1}{\beta} - 3\alpha\beta \) is: \[ \boxed{-\frac{7}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective Problems) (Long Answer Type)|4 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective Problems) (Integer/Numerical Value Type)|10 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective Problems) (Very Short Answer Type )|10 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 3.7)|18 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|26 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-x-4, find the value of (1)/(alpha)+(1)/(beta)-alpha beta

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)+x-2, find the value of (1)/(alpha)-(1)/(beta)

If alpha and beta ar the zeros of the quadratic polynomial f(x)=x^(2)+x-2, find the value of (1)/(alpha)-(1)/(beta)

If alpha and beta are the zeros of the quadratic polynomial f(x)=5x^(2)-7x+1, find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta be the zeros of the polynomial x^(2)+x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-5x+4 , find the value of (1)/(alpha)+(1)/(beta)-2 alpha beta

If alpha and beta are the zeros of the polynomial f(x) = 5x^(2) - 7x + 1 , find the value of (1/alpha+1/beta).

If alpha,beta are the zeroes of the polynomials f(x)=x^(2)-3x+6 then find the value of (1)/(alpha)+(1)/(beta)+alpha^(2)+beta^(2)-2 alpha beta