Home
Class 10
MATHS
If alpha,beta be the zeroes of the polyn...

If `alpha,beta` be the zeroes of the polynomial `2x^(2)+5x+k` such that `alpha^(2)+beta^(2)+alphabeta=(21)/(4)`, then k=?

A

3

B

`-3`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the polynomial \( 2x^2 + 5x + k \) given that the zeros \( \alpha \) and \( \beta \) satisfy the equation \( \alpha^2 + \beta^2 + \alpha \beta = \frac{21}{4} \), we can follow these steps: ### Step 1: Identify the coefficients The polynomial can be expressed in the standard form \( Ax^2 + Bx + C \), where: - \( A = 2 \) - \( B = 5 \) - \( C = k \) ### Step 2: Use Vieta's formulas From Vieta's formulas, we know: - The sum of the roots \( \alpha + \beta = -\frac{B}{A} = -\frac{5}{2} \) - The product of the roots \( \alpha \beta = \frac{C}{A} = \frac{k}{2} \) ### Step 3: Express \( \alpha^2 + \beta^2 \) We can express \( \alpha^2 + \beta^2 \) using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \] Substituting the values we have: \[ \alpha^2 + \beta^2 = \left(-\frac{5}{2}\right)^2 - 2\left(\frac{k}{2}\right) \] Calculating \( \left(-\frac{5}{2}\right)^2 \): \[ \alpha^2 + \beta^2 = \frac{25}{4} - k \] ### Step 4: Substitute into the given equation Now, substitute \( \alpha^2 + \beta^2 \) into the equation \( \alpha^2 + \beta^2 + \alpha \beta = \frac{21}{4} \): \[ \frac{25}{4} - k + \frac{k}{2} = \frac{21}{4} \] ### Step 5: Simplify the equation To simplify, first combine the terms involving \( k \): \[ \frac{25}{4} - k + \frac{k}{2} = \frac{21}{4} \] Multiply through by 4 to eliminate the fractions: \[ 25 - 4k + 2k = 21 \] This simplifies to: \[ 25 - 2k = 21 \] ### Step 6: Solve for \( k \) Rearranging gives: \[ 25 - 21 = 2k \] \[ 4 = 2k \] Dividing both sides by 2: \[ k = 2 \] ### Final Answer Thus, the value of \( k \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective Problems) (Integer/Numerical Value Type)|10 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 3.7)|18 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|26 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta be the zeros of the polynomial 2x^(2)+5x+k such that alpha^(2)+beta^(2)+ alpha beta = (21)/4 then k= ?

if alpha& beta are zeroes of the polynomial 2x^(2)-5x+8 then

If alpha and beta are the zeroes of the polynomial 2x^(2)-4x+5 find the value of alpha^(2)+beta^(2)

If alpha and beta are the zeros of the polynomial f(x)=2x^(2)+5x+k satisfying the relation alpha^(2)+beta^(2)+alpha beta=(21)/(4) ,then find the value of k for this to be possible.

If alpha and beta are the zeroes of the quadratic polynomial x^(2)-kx+15 such that (alpha+beta)^(2)-2 alpha beta=34 Find k

If alpha and beta are the zeroes of quadratic polynomial x^(2)-kx+15 such that (alpha+beta)^(2)-2 alpha beta=34. find k

If alpha,beta are zeroes of the quadratic polynomial p(x)=2x^(2)-Kx+7 such that alpha^(2)+beta^(2)-(1)/(2)alpha beta=(23)/(2). Find the value of K

If alpha and beta are the zeroes of the polynomial kx^(2)+4x+4, such that alpha^(2)+beta^(2)=24. find the value of k .

If alpha,beta are the zeros of the polynomial 2y^(2)+7y+5, write the value of alpha+beta+alpha beta

If alpha, beta are the zeros of the polynomial x^(2) + 6x+2" then " (1/alpha+1/beta)=?