Home
Class 10
MATHS
If alpha,\ beta,\ gamma are the zeros of...

If `alpha,\ beta,\ gamma` are the zeros of the polynomial `f(x)=a x^3+b x^2+c x+d` , then `1/alpha+1/beta+1/gamma=` (a) ` b/d` (b) `c/d` (c) ` c/d` (d) ` c/a`

A

`-(b)/(c)`

B

`(c)/(d)`

C

`-(c)/(d)`

D

`-(c)/(a)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective Problems) (Integer/Numerical Value Type)|10 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 3.7)|18 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|26 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the zeros of the polynomial 2x^(3)+ x^(2) - 13 x+ 6 then alpha beta gamma = ?

If alpha,beta,gamma are the zeros of the polynomial f(x)=ax^(3)+bx^(2)+cx+d, then (1)/(alpha)+(1)/(beta)+(1)/(gamma)=( a) (b)/(d)(b)(c)/(d)(c)(c)/(d)(d)(c)/(a)

If alpha,betaandgamma are the zeros of the polynomial f(x)=ax^(3)+bx^(2)+cx+d , then alpha^(2)+beta^(2)+gamma^(2) is equal to

If alpha, beta, gamma are the zeros of the polynomial x^(3)-6x^(2) -x+ 30 then (alpha beta+beta gamma + gamma alpha) = ?

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)=

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^(3)-px^(2)+qx-r, then (1)/(alpha beta)+(1)/(beta gamma)+(a)/(gamma alpha)=(r)/(p)( b) (p)/(r)(c)-(p)/(r)(d)-(r)/(p)

If alpha, beta , gamma are the zeros of the polynomial x^(3)-6x^(2)-x+30 then the value of (alpha beta+beta gamma+gamma alpha) is

If alpha,beta are the zeros of the polynomial f(x)=x^(2)+x+1, then (1)/(alpha)+(1)/(beta)=( a) 1 (b) -1( c) 0 (d) None of these

If alpha,beta,gamma are the zeroes of the polynomial f(x)=2x^(3)+6x^(2)-4x+9, find the value of (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha)

If alpha,beta are the zeros of polynomial f(x)=x^(2)-p(x+1)-c, then (alpha+1)(beta+1)=(a)c-1(b)1-c(c)c(d)1+c