Home
Class 10
MATHS
If a,b,c are in A.P., prove that a^(2)+c...

If a,b,c are in A.P., prove that `a^(2)+c^(2)-2bc=2a(b-c)`.

Promotional Banner

Topper's Solved these Questions

  • ARITHMETIC PROGRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE - SUBJECTIVE PROBLEMS ( SHORT ANSWER TYPE )|10 Videos
  • ARITHMETIC PROGRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE - SUBJECTIVE PROBLEMS ( LONG ANSWER TYPE )|5 Videos
  • ARITHMETIC PROGRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (COMPREHENSION TYPE )PASSAGE II |3 Videos
  • AREAS RELATED TO CIRCLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|30 Videos
  • CIRCLES

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|30 Videos

Similar Questions

Explore conceptually related problems

if a,b,c are in AP, prove that (a-c)^(2) = 4( b^(2) -ac)

If a, b, c are in A.P., prove that a^(2)(b+c),b^(2)(c+a),c^(2)(a+b)" are also in A.P."

If a,b,c are in A.P. prove that (a-c)^(2)=4(a-b)(b-c)

If a,b,c are in AP,then prove that (a-c)^(2)=4(b^(2)-ac)

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)

If a,b,c are in G.P., prove that a^(2)+b^(2),ab+bc,b^(2)+c^(2) are also in G.P

If ab+bc+ca!=0 and a,b,c are in A.P. prove that a^(2)(b+c),b^(2)(c+a),c^(2)(a+b) are also in A.P.

If a, b, c are in A.P., prove that a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2)).

If a,b,c are in G.P.then prove that (a^(2)+ab+b^(2))/(bc+ca+ab)=(b+a)/(c+b)

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).