Home
Class 12
MATHS
Let vec a , vec ba n d vec c be unit ve...

Let ` vec a , vec ba n d vec c` be unit vectors, such that ` vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2.` Then find the angel between `cc` and `xxdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2. Then find the angel between c and x dot

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

Let vec a,vec b and vec c be unit vectors,such that vec a+vec b+vec c=vec x,vec a*vec x=1,vec b*vec x=(3)/(2),|vec x|=2 Then find the angel between cc and xx.

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec b+ vec c=0, then find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot

If vec a,vec b,vec c are unit vectors such that vec a+vec b+vec c=vec 0 find the value of vec a+vec b+vec bdot c+vec *vec a

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a ,\ vec b ,\ vec c are three vectors such that vec adot\ vec b= vec adot\ vec c and vec a\ x\ vec b= vec a\ x\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .