Home
Class 12
MATHS
If x=f(t) and y=phi(t) then to prove tha...

If `x=f(t) and y=phi`(t) then to prove that `(dy)/(dx)=((dy)/(dt))/((dx)/(dt))=(phi'(t))/(f'(t))`.

Text Solution

Verified by Experts

The correct Answer is:
T
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIABILITY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|50 Videos
  • DIFFERENTIABILITY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 1 MARK (FILL IN THE BLANKS QUESTIONS) TYPE-II|20 Videos
  • DIFFERENTAL QUATIONS

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|41 Videos
  • INDEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|15 Videos

Similar Questions

Explore conceptually related problems

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x=cost " and " y=sint ,"prove : "(dy)/(dx)=1/(sqrt(3))"at " t=(2pi)/3

If x=f(t) and y=phi(t), prove that (d^2y)/(dx^2)=(f_1phi_2-f_2phi_1)/(f_1^3) where suffixes denote differentiation w.r.t.t.

If x=f(t)cost-f^(prime)(t)sint and y=f(t)sint+f^(prime)(t)cost , then ((dx)/(dt))^2+((dy)/(dt))^2= f(t)-f"(t) (b) {f(t)-f"(t)}^2 (c) {f(t)+f"(t)}^2 (d) none of these

If x = (1+logt)/t^2, y = (3+2logt)/t, t > 0 , prove that y(dy/dx) - 2x(dy/dx)^2 = 1

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If y=int_(0)^(x)f(t)sin{k(x-t)}dt , then prove that (d^(2)y)/(dx^(2))+k^(2)y=kf(x) .

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4