Home
Class 12
MATHS
The formula (veca+vecb)^(2)=veca^(2)+vec...

The formula `(veca+vecb)^(2)=veca^(2)+vecb^(2)+2vecaxxvecb` is valid for non zero vectors `veca` and `vecb`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 2 MARKS|102 Videos
  • VECTOR ALGEBRA

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 1 MARK (TYPE - II : FILL IN THE BLANKS QUESTIONS)|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 6 MARKS:|56 Videos

Similar Questions

Explore conceptually related problems

Show that (veca-vecb)xx(veca+vecb) = 2(vecaxxvecb)

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb) .

Prove that : (vecaxxvecb)^2=|\veca|^2.|\vecb|^2-(veca.vecb)^2 .

Show that |veca|vecb + |vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb

If veca and vecb are any two vectors, prove that (vecaxxvecb)^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2) It is known as Largange's indentity.

If |vecaxxvecb|^(2)+|veca.vecb|^(2)=144 and |veca|=3 then |vecb| is equal to

If veca*vecb=|vecaxxvecb| , then angle between vector veca and vector vecb is :