Home
Class 12
MATHS
Prove that cot^(-1)((sqrt(1+x)-sqrt(1-x)...

Prove that `cot^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/(4)+(1)/(2)cos^(-1)x`

Answer

Step by step text solution for Prove that cot^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/(4)+(1)/(2)cos^(-1)x by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER - II (UNSOLVED)

    ACCURATE PUBLICATION|Exercise Section - D|6 Videos
  • SAMPLE QUESTION PAPER - II (UNSOLVED)

    ACCURATE PUBLICATION|Exercise Section - B|8 Videos
  • SAMPLE QUESTION PAPER - I

    ACCURATE PUBLICATION|Exercise Section - D|6 Videos
  • SAMPLE QUESTION PAPER-I

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/(4)-(1)/(2)cos^(-1)x,(-1)/(2)lexle1

Prove that tan^-1((sqrt(1+x)- (sqrt(1-x)))/(sqrt(1+x) + (sqrt(1-x)))) = pi/4 - 1/2 cos^-1 x

Prove that : tan^-1[(sqrt(1+x) - sqrt(1-x))/(sqrt1+x + sqrt1-x)] = pi/4 - 1/2cos^-1x

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

Show that : tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=pi/4+1/2cos^(-1)x^(2) .

Show that: tan^(-1)[(sqrt(1+x^(2)) + sqrt(1-x^(2)))/(sqrt(1 +x^(2))- sqrt(1-x^(2)))]=pi/4 +1/2 cos^(-1) x^(2), -1 lt x lt 1

Prove that : cot^-1[(sqrt(1+sin x) + sqrt(1-sin x))/(sqrt1+sin x + sqrt(1-sin x))] = x/2, x in (0, pi/4)

Differentiate tan^(-1) ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) w.r.t. x .

Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x

underset(xrarr0)lim (sqrt(1+x^2)-sqrt(1+x))/(sqrt(1+x^2)+sqrt(1+x))